Современная радиосвязь значительно отличается по сравнению с далекими временами. Постоянно появляются и внедряются инновационные приборы и методики, которые имеют более высокие функциональные возможности. Именно поэтому они пользуются большой популярностью.

Несмотря на наличие других видов связи, этот тип все также не утрачивает своей актуальности и сегодня. Стоит отметить, что он имеет свои особенности.

Сама радиосвязь представляет собой передачу различного рода информации посредством электромагнитных волн, которые распространяются в пространстве между двумя пунктами: самим источником и системой приема данных.

Излучение происходит с помощью специальных антенн. Как правило, они представляют собой провод, по которому протекают токи высокой частоты. Последние создаются непосредственно передатчиком. За счет того, что токи высокой частоты протекают по проводу, в окружающем пространстве образовывается электромагнитное поле радиоволны.

К основным характеристикам современной радиосвязи относятся:

  • диапазон волн;
  • мощность;
  • вид и качество передаваемых сигналов.

Современная радиосвязь – инновационные методы передачи информации на больше расстояния. Посредством применения подобных технологий можно достичь высокого качества сигнала.

Принципы современной радиосвязи

Существует определенная классификация радиоволн. В зависимости от этого и выбирается передатчик.

Передатчик может быть:

  • километровым;
  • гектометровым;
  • декаметровым и т.д.

Также это оказывает влияние на особенности конструкции устройства. Современная радиосвязь предполагает использование передатчиков, которые могут работать одновременно на нескольких фиксированных волнах. Также при необходимости они настраиваются на абсолютно любую длину в непрерывном диапазоне.

Важным показателем является также мощность устройств передачи информации. От этого параметра непосредственно зависит качество передаваемого сигнала.

Сигнал определяется как минимальная мощность высокочастотных колебаний, которые поступают в антенну при условиях, что модуляция отсутствует, а излучение является непрерывным. Однако это далеко не все.

Современная радиосвязь имеет дело с сигналами, имеющих определенные особенности. Как правило, их напряжение может варьироваться в достаточно широком диапазоне.

Также за минимальный период времени оно принимает значения, которые превосходят средний уровень.

Примеры технологий современной радиосвязи на выставке

Проведение тематических проектов и отраслевых мероприятий имеет огромное значение для развития индустрии.

Подобные мероприятия позволяют:

  • повысить конкурентную способность;

  • увеличить качество отечественной продукции;

  • наладить сотрудничество на интернациональном уровне;

  • принять участие в деловой программе;

  • повысить инвестиционную привлекательность индустрии в целом;

  • обменяться опытом и знаниями.

Одним из таких проектов является выставка «Связь». Ее организатором традиционно стал комплекс международного масштаба ЦВК «Экспоцентр».

Устроители позаботились о том, чтобы мероприятие проводилось на максимально высоком уровне в формате «В2В».

Здесь также можно принять участие в деловой программе, которая предусматривает рассмотрение всех направлений в данной области, в частности и современная радиосвязь.

Передача и приём информации посредством электромагнитных волн называется радиосвязью. Линии радиосвязи используют, например, для осуществления радиотелефонной связи, передачи телеграмм, факсимиле (факсов), радиовещательных и телевизионных программ.

Радиосвязь представляет собой довольно сложный процесс. Поэтому рассмотрим лишь наиболее общие принципы одного из её видов - радиотелефонной связи, т. е. передачи звуковой информации, например речи и музыки, с помощью электромагнитных волн. Для получения целостного представления об этом процессе обратимся к блок-схеме, представленной на рисунке 139.

Рис. 139. Блок-схема процесса радиосвязи

На рисунке 139, а изображено передающее устройство, состоящее из генератора высокочастотных колебаний, микрофона, модулирующего устройства и передающей антенны.

В микрофон поступают звуковые колебания (речь, музыка и т. д.). Они преобразуются микрофоном в электрические колебания такой же формы, какую имеют звуковые. Из микрофона низкочастотные электрические колебания поступают в модулирующее устройство. Туда же из генератора подаются высокочастотные колебания постоянной амплитуды.

В модулирующем устройстве амплитуду высокочастотных колебаний изменяют (модулируют) с помощью электрических колебаний звуковой частоты. В результате амплитуда становится переменной, причём меняется она точно так же, как и поступающие из микрофона электрические колебания. Такие высокочастотные модулированные по амплитуде колебания несут в себе информацию о форме звукового сигнала. Поэтому частота высокочастотных колебаний называется несущей.

Процесс изменения амплитуды высокочастотных колебаний с частотой, равной частоте звукового сигнала, называется амплитудной модуляцией.

Под воздействием высокочастотных модулированных колебаний в передающей антенне возникает переменный ток высокой частоты. Этот ток порождает в пространстве вокруг антенны электромагнитное поле, которое распространяется в пространстве в виде электромагнитных волн и достигает антенн радиоприёмных устройств.

Вы уже знаете о том, что мощность электромагнитной волны пропорциональна четвёртой степени её частоты: Р ~ v 4 .

Электромагнитные волны звуковых, т. е. низких, частот (от 16 до 20 000 Гц) имеют малую мощность и после излучения очень быстро затухают. Этим и вызвана необходимость использования модулированных радиоволн, которые благодаря высокой несущей частоте распространяются на большие расстояния и при этом содержат информацию о форме передаваемых звуковых колебаний.

Как видно из рисунка 139, б, радиоприёмное устройство состоит из приёмной антенны, приёмного резонирующего колебательного контура и детектора - элемента, пропускающего переменный ток только в одном направлении.

В приёмную антенну поступают волны от множества радиостанций. Но каждая радиостанция осуществляет вещание только на строго определённой, отведённой ей несущей частоте.

Настраивая свой радиоприёмник на частоту нужной радиостанции, вы меняете собственную частоту имеющегося в приёмнике колебательного контура так, чтобы она была равна несущей частоте данной радиостанции, т. е. чтобы контур был настроен в резонанс с колебаниями, генерируемыми на данной радиостанции. При этом амплитуда колебаний выбранной радиостанции в контуре вашего приёмника будет максимальной по сравнению с амплитудами колебаний, поступивших от радиостанций, вещающих на других несущих частотах. В этом заключается второе назначение несущей частоты - она обеспечивает возможность настройки на частоту нужной радиостанции.

Александр Степанович Попов (1859-1906)
Русский физик, электротехник, изобретатель радио. Сконструировал генератор электромагнитных колебаний. Изобрёл приёмную антенну, построил первый в мире радиоприёмник

Принятые колебания сначала усиливают. Затем для преобразования высокочастотных модулированных колебаний в звуковые производят детектирование, т. е. процесс, обратный модуляции. Детектирование проводится в два этапа: сначала с помощью детектора (представляющего собой элемент с односторонней проводимостью) из высокочастотных модулированных колебаний получают высокочастотный пульсирующий ток (рис. 140, а), а затем в динамике этот ток сглаживается и преобразуется в колебания звуковых частот (рис. 140, б). На возможность использования электромагнитных волн для передачи радиосигналов 1 впервые указал в 1889 г. Александр Степанович Попов. В 1896 г. при помощи сконструированных им передатчика и приёмника радиосигналов передал первую в мире радиограмму, состоящую из двух слов «Генрих Герц».

Рис. 140. Графики высокочастотных модулированных колебаний и звуковых колебаний

При передаче телевизионных программ высокочастотные колебания модулируются не только звуковым, но и видеосигналом. Это осуществляется с помощью телевизионной передающей трубки, которая преобразует оптическое изображение в электромагнитные колебания. Модулированные таким образом высокочастотные колебания заключают в себе информацию и о звуке, и об изображении.

В телевидении используются более высокие (порядка миллиардов герц) несущие частоты.

Вопросы

  1. Что называется радиосвязью?
  2. Приведите 2-3 примера использования линий радиосвязи.
  3. Используя рисунки 139 и 140, расскажите о принципах осуществления радиотелефонной связи.
  4. Частота каких колебаний называется несущей?
  5. В чём заключается процесс амплитудной модуляции электрических колебаний?
  6. Почему в радиосвязи не используются электромагнитные волны звуковых частот?
  7. В чём заключается процесс детектирования колебаний?

Упражнение 43

Период колебаний зарядов в антенне, излучающей радиоволны, равен 10 -7 с. Определите частоту этих радиоволн.

1 Радиосигналы - электромагнитные волны, излучаемые в течение коротких промежутков времени в диапазоне частот от 104 до 1010 кГц.

Что представляет собой принцип радиосвязи? Начнем с того, что для ее осуществления необходимо иметь два прибора: приемник и передатчик электромагнитных и звуковых волн.

Принципы связи

Простые приборы, которые нужны для работы, создал в 1886 году Г. Герц. Принцип радиосвязи основывается на классических законах физики. Если разрезать на две половины и присоединить к отрезкам высоковольтный трансформатор, между ними будет возникать переменный (пульсирующий) ток, а вокруг него появляется электромагнитное поле. Проволока в данном случае рассматривается и в качестве передатчика, и в виде передающей антенны.

Особенности

Принцип радиосвязи основывается на характеристиках электромагнитного поля. Так как для его распространения необходимы волны, уловить его можно на значительном расстоянии с помощью приемника. В его роли выступают два куска металлической проволоки, расположенные параллельно к передающей антенне. Так как энергия волн будет распространяться в разные стороны, а приемнику удается улавливать только ее часть, в воздушном пространстве искры малы. Но в темноте их можно видеть даже без оптических приборов.

Особенности использования

Принципы радиосвязи базируются на передающих устройствах, разработанных Герцем, но подходят только для несущественных расстояний. Объясняется такая ограниченность применения незначительной мощностью радиоволн. Для того чтобы справиться с данной проблемой, был создан генератор высокой частоты. С его помощью радиоволны могли распространяться на значительные расстояния.

Схема радиотелефонной связи

Рассмотрим основные принципы радиосвязи и примеры их практического использования. В современном передатчике присутствует генератор высоких частот для создания необходимой мощности излучения. С его помощью образуется несущая частота, используемая приемником для настройки. У современного передатчика есть модулятор. Он представляет собой устройство, которое изменяет амплитуду либо частоту волны синхронно с музыкой либо голосом. Обязательным элементом передатчика является и передающая антенна.

Модуляция

Самой простой для восприятия является амплитудная модуляция. У высокочастотных колебаний, которые создает генератор, существует постоянная амплитуда. С помощью модулятора происходит ее изменение «по форме» сигнала низкой частоты, идущего от микрофона. Модулированный сигнал попадает на приемную антенну в качестве волн с непостоянной амплитудой.

Демодуляция

Принцип радиосвязи характеризуется и демодуляцией. После улавливания приемной антенной волн происходит отделение сигнала от одного передатчика, который функционирует на частоте, выбранной в качестве несущей величины. Для проведения таких преобразований применяется настроечный приемный контур. Тот сигнал, который выделен от одного передатчика, поступает в демодулятор. В этом устройстве происходит разделение низкочастотных колебаний от высокочастотного сигнала. Далее он поступает в громкоговоритель или в наушники.

Диапазоны волн

Рассматривая принципы радиосвязи, отметим, что волны имеют разные диапазоны. В настоящее время применяют средние, сверхдлинные, короткие, длинные, а также ультракороткие радиоволны. Их достаточно широко используют в разнообразных сферах электроники:

  • радиосвязь;
  • телевидение;
  • радиовещание;
  • радиоразведка;
  • метеорология.

Принцип современной радиосвязи предполагает превращение звуковых колебаний в электрические виды с помощью микрофона. Сложность передачи такого сигнала состоит в том, что для осуществления радиосвязи требуются высокочастотные колебания, а звуковые волны имеют низкую частоту. Для решения проблемы используются мощные антенны. Для звуковой частоты накладывание колебаний осуществляется так, чтобы переносить сигнал на существенные расстояния.

Современные принципы радиосвязи и телевидения базируются на радиопередающем устройстве. Он имеет генератор высокой частоты, который преобразует постоянное напряжение в высокочастотные гармонические колебания. Несущая частота должна быть постоянной величиной.

Принципы радиосвязи и телевидения предполагают определенное строение генератора. Он преобразовывает полученные сообщения в электрический сигнал, который и используется для процесса модуляции постоянной частоты. Выбор такого устройства основывается на физической природе транслируемого сигнала, В случае звука для этого используется микрофон, для передачи картинки применяют передающую телевизионную трубку. Модулятор необходим для проведения процесса перевода сигнала высокой частоты в ту величину, которая соответствует звуковому сигналу с передаваемой информацией. Также используются один либо два каскада для усиления модулированного сигнала. Излучающая антенна предназначена для выброса в окружающее пространство электромагнитных волн.

Заключение

Радиопередающее устройство используется для приема той информации, которая передается благодаря электромагнитным волнам, исходящим от передающей антенны современного радиопередатчика. В данном устройстве предполагается наличие следующих основных элементов:

  • Приемная антенна, которая нужна для улавливания электромагнитных колебаний. Здесь систематически возникают модулированные вынужденные колебания, которые возбуждаются разнообразными радиостанциями.
  • Резонансный контур настраивается на конкретную частоту, считающуюся полезным сигналом.
  • Детекторный каскад необходим для предобразования усиленного модулированного высокочастотного сигнала, а также выделения из него модулирующего сигнала, который несет передаваемую информацию.

Детектирование является процессом, противоположным модуляции. Детекторами выступают полупроводниковые приборы и электронные лампы, которые имеют нелинейные характеристики. Моделирование и детектирование являются основными процессами, которые способствуют передаче и приему звука и изображения, то есть они связаны с передачей телевизионного изображения и звукового сигнала.

Английский ученый Джеймс Максвелл на основании изучения экспериментальных работ Фарадея по электричеству высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами. По представлениям Максвелла: при любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле. Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве (рис. 42). Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Переменное электрическое поле порождает вихревое магнитное поле, переменное магнитное поле порождает вихревое электрическое поле.

Электрические и магнитные поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитных волн в вакууме.

Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит

При изменении тока в проводнике, а изменение тока происходит при изменении скорости зарядов, т. е. при движении их с ускорением. Скорость распространения электромагнитных волн в вакууме, по расчетам Максвелла, должна быть приблизительно равна 300 000 км/с.

Впервые опытным путем получил электромагнитные волны физик Генрих Герц, использовав при этом высокочастотный искровой разрядник (вибратор Герца). Герц опытным путем определил также скорость электромагнитных волн. Она совпала с теоретическим определением скорости волн Максвеллом. Простейшие электромагнитные волны - это волны, в которых электрическое и магнитное поля совершают синхронные гармонические колебания.

Конечно, электромагнитные волны обладают всеми основными свойствами волн.

Они подчиняются закону отражения волн: угол падения равен углу отражения. При переходе из одной среды в другую преломляются и подчиняются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломления второй среды относительно первой.

Явление дифракции электромагнитных волн, т. е. отклонение направления их распространения от прямолинейного, наблюдается у края преграды или при прохождении через отверстие. Электромагнитные волны способны к интерференции. Интерференция - это способность когерентных волн к наложению, в результате чего волны в одних местах друг друга усиливают, а в других местах - гасят. (Когерентные волны - это волны, одинаковые по частоте и фазе колебания.) Электромагнитные волны обладают дисперсией, т. е. когда показатель преломления среды для электромагнитных волн зависит от их частоты. Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что эти волны являются поперечными.

При распространении электромагнитной волны векторы напряженности Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис. 43).

Возможность практического применения электромагнитных волн для установления связи без проводов продемонстрировал 7 мая 1895 г. русский физик А. Попов. Этот день считается днем рождения радио. Для осуществления радиосвязи необходимо обеспечить возможность излучения электромагнитных волн. Если электромагнитные волны возникают в контуре из катушки и конденсатора, то переменное магнитное поле оказывается связанным с катушкой, а переменное электрическое поле - сосредоточенным между пластинами конденсатора. Такой контур называется закрытым (рис. 44, а).

Закрытый колебательный контур практически не излучает электромагнитные волны в окружающее пространство. Если контур состоит из катушки и двух пластин плоского конденсатора, то под чем большим углом развернуты эти пластины, тем более свободно выходит электромагнитное поле в окружающее пространство (рис. 44, б). Предельным случаем раскрытого колебательного контура является удаление пластин на противоположные концы катушки. Такая система называется открытым колебательным контуром (рис. 44, в). В действительности контур состоит из катушки и длинного провода - антенны.

Энергия излучаемых (при помощи генератора незатухающих колебаний) электромагнитных колебаний при одинаковой амплитуде колебаний силы тока в антенне пропорциональна четвертой степени частоты колебаний. На частотах в десятки, сотни и даже тысячи герц интенсивность электромагнитных колебаний ничтожно мала. Поэтому для осуществления радио- и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.

При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс - детектирование. При радиоприеме из принятого антенной приемника модулированного сигнала нужно отфильтровать звуковые низкочастотные колебания.

С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов. Большую роль в современном морском флоте, авиации и космонавтике играет радиолокация. В основе радиолокации лежит свойство отражения волн от проводящих тел. (От поверхности диэлектрика электромагнитные волны отражаются слабо, а от поверхности металлов почти полностью.)

Электромагнитная волна – это меняющееся с течением времени и распространяющееся в пространстве электромагнитное поле.

Свойства электромагнитных волн :

1.Возникают при ускоренном движении зарядов.

2.Являются поперечными.

3.Имеют скорость в вакууме 3٠ 10 8 м/с.

4.Переносят энергию

5.Проникающая способность и энергия зависит от частоты.

6.Отражаются.

7.Обладают интерференцией и дифракцией.

Свойство отражения электромагнитных волн используется в радиолокации.

Радиолокация – это обнаружение и определение местонахождения объектов с помощью радиоволн.

Радиолокационная установка (радиолокатор) состоит из передающей и приёмной частей.

От передающей антенны идёт электромагнитная волна, доходит до объекта и отражается.

Радиолокаторы используют в военных целях, а также службой погоды для наблюдения за облаками. С помощью радиолокации исследуются поверхности Луны, Венеры и других планет.


Билет №13

  1. Механическая работа. Мощность. Энергия; кинетическая энергия; потенциальная энергия тела в однородном поле тяготения и энергия упруго деформированного тела; закон сохранения энергии; закон сохранения энергии в механических процессах; границы применимости закона сохранения механической энергии, работа как мера изменения механической энергии тела.
  2. Принципы радиосвязи: излучение электромагнитных волн зарядом, движущимся с ускорением; амплитудная модуляция; детектирование; развитие средств связи; радиолокация.
  3. Задача на применение уравнения состояния идеального газа.

Вопрос 1. Механическая работа. Мощность. Кинетическая и потенциальная энергия. Закон сохранения энергии механических процессов.

Работа – это величина, равная произведению силы, приложенной к телу на величину перемещения.

А= F*s , где А – работа, Дж

F – сила, Н

s - перемещение, м

Механическая энергия – эта сумма потенциальной и кинетической энергии тела: W=W кин *W п

W кин - кинетическая энергия – это энергия движения. Этой энергией обладает любое тело, которое находится в движении: , где m - масса тела (кг),V - скорость (м/с 2)

W п - потенциальная энергия (Дж) – это энергия взаимодействия, зависит от массы тела (m ) и его высотой над землей (h ):

Если тело или система тел могут совершить работу, то они обладают энергией.

Энергия – это физическая величина, показывающая, какую работу может совершить тело.

Энергия обозначается буквой Е, измеряется в Джоулях (Дж).

Механическая энергия бывает двух видов: кинетическая и потенциальная.

Кинетической энергией называется величина, равная половине произведения массы тела на квадрат его скорости.

Кинетическая энергия – это энергия движения. Например, кинетической энергией обладает двигающаяся машина, летящий воздушный шарик и т.д.

Потенциальная энергия определяется положением тела по отношению к другим телам или взаимным расположением частей одного и того же тела.

Величину, равную произведению массы тела на ускорение свободного падения и на высоту тела над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли .

Величину, равную половине произведения коэффициента упругости на квадрат деформации, называют потенциальной энергией упруго деформированного тела .

Например, потенциальной энергией обладает подброшенный на высоту мяч или сжатая пружина.

Для замкнутой системы тел выполняется закон сохранения энергии: полная механическая энергия тела или замкнутой системы тел остаётся постоянной (если не действуют силы трения).

Вопрос 2. Принципы радиотелефонной связи. Амплитудная модуляция и детектирование. Простейший радиоприёмник.

Для осуществления радиосвязи используются электромагнитные волны частотой от нескольких сотен тысяч герц до сотен тысяч мегагерц. Такие волны хорошо излучаются антеннами передатчиков, распространяются в пространстве и доходят до антенны приёмника.

Микрофон передатчика преобразует звуковые волны в электрические колебания низкой частоты, которые не излучаются антенной. Эти колебания складываются с колебаниями, которые вырабатывает генератор высокой частоты, и получаются амплитудно-модулированные колебания . Они являются высокочастотными, но изменёнными по амплитуде в соответствии со звуковыми колебаниями.

Амплитудно-модулированные колебания излучаются передающей антенной и доходят до приёмной антенны . В приёмнике происходит детектирование – выделение из высокочастотных модулированных колебаний сигнала звуковой частоты.

Простейший приёмник состоит из приёмной антенны, колебательного контура, детектора, конденсатора, усилителя и динамика.

В антенне приёмника возникают колебания той же частоты, на которой работает передатчик. Чтобы настроить радиоприёмник на частоту какой-нибудь радиостанции обычно используют конденсатор переменной ёмкости . С изменением его ёмкости меняется собственная частота контура приёмника. При совпадении этой частоты с частотой какой-нибудь радиостанции наступает резонанс – резкое увеличение силы тока.

Затем с колебательного контура модулированные колебания поступают на детектор , который пропускает ток только в одном направлении. После детектора ток становится пульсирующий. Импульсы тока делятся: часть заряжает конденсатор, другая часть идёт на динамик. В промежутке между импульсами, когда через детектор ток не идет, конденсатор разряжается через динамик. В результате этого через нагрузку течёт ток звуковой частоты, и из динамика слышны музыка или речь.

Шкала электромагнитных излучений. Применение электромагнитных излучений на практике.

Шкала электромагнитных волн простираются от длинных радиоволн (λ>1 км) до γ-лучей (λ<10 -10 м) . Электромагнитные волны различной длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).

Принято выделять следующие семь излучений: низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма- излучение.

Низкочастотное излучение имеет самую маленькую частоту и самую большую длину волны. Его источники: переменные токи и электрические машины. Это излучение слабо поглощается воздухом, намагничивает железо. Применяется для изготовления постоянных магнитов, в электротехнической промышленности.

Радиоволны находятся в интервале частот от 10 3 до 10 11 Гц. Они излучаются антеннами передатчиков и также лазерами. Радиоволны хорошо распространяются в воздухе, отражаются от металлических предметов, облаков. Радиоволны используются для радиосвязи и радиолокации.

Инфракрасное излучение имеет ещё большую частоту, чем радиоволны (до 10 14 Гц) и излучается всеми нагретыми телами. Оно хорошо проходит через туман и другие непрозрачные тела, действует на термоэлементы. Применяется для плавки, сушки, в приборах ночного видения, в медицине.

Видимый свет имеет частоту порядка 10 14 Гц, длину волны 10 7 м. Это единственное видимое излучение. Источники: Солнце, лампы. Свет делает видимыми окружающие предметы, разлагается на лучи разного цвета, вызывает фотоэффект и фотосинтез.

Используется для освещения.

Ультрафиолетовое излучение имеет частоту от 10 14 до 10 17 Гц. Его источники: Солнце, кварцевые лампы. Это излучение вызывает фотохимические реакции, на коже образуется загар, убивает бактерии, поглощается озоном. Применяется в медицине, в газоразрядных лампах.

Рентгеновские лучи образуются в рентгеновской трубке при резком торможении электронов. Они обладают большой проникающей способностью, активно воздействуют на клетки, фотоэмульсию. Применяются в медицине, в рентгенографии.

Гамма-лучи (γ-лучи) имеют самую большую частоту (10 19 -10 29 Гц). Они образуются при радиоактивном распаде, при ядерных реакциях. Имеют наибольшую проникающую способность, не отклоняются полями, разрушают живые клетки. Применяются в медицине, военном деле.


Билет №14

  1. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул.
  2. Свет как электромагнитная волна. Скорость света. Интерференция света, опыт Юнга; цвета тонких пленок.
  3. Экспериментальное задание: «Измерение плотности вещества твердого тела».

Вопрос 1. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул.

Молекулярно-кинетическая теория (МКТ) – это учение о строении и свойствах вещества, использующее представления о существовании атомов и молекул как мельчайших частиц вещества.

В основе МКТ лежат три основных положения:

1.Все вещества состоят из мельчайших частиц: атомов и молекул.

2.Эти частицы беспорядочно двигаются.

3.Частицы взаимодействуют друг с другом.

Основные положения МКТ подтверждаются опытными фактами.

Существование атомов и молекул доказано экспериментально, получены фотографии с помощью электронных микроскопов.

Способность газов неограниченно расширяться и занимать весь объём объясняется непрерывном хаотичным движением молекул. Также его объясняет диффузия и броуновское движение.

Упругость газов, твёрдых и жидких тел, способность жидкостей смачивать некоторые твёрдые тела, процессы окрашивания, склеивания, сохранения формы твёрдыми телами говорят о существовании сил притяжения и отталкивания между молекулами.

Массы и размеры молекул очень малы, и удобно использовать не абсолютные значения масс, а относительные. Относительные атомные массы всех химических элементов указаны в таблице Менделеева (в сравнении с массой атома углерода).

Количество вещества, содержащее столько же частиц, сколько атомов содержится в 0,012 кг углерода, называется одним молем .

В одном моле любого вещества содержится одно и то же число атомов или молекул. Это число называется постоянной Авогадро: .

Массу одного моля называют молярной массой : .

Количество вещества равно отношению массы вещества к его молярной массе: .

Английский ученый Джеймс Максвелл на основании изучения экспериментальных работ Фарадея по электричеству высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами. По представлениям Максвелла: при любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле. Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве (рис. 42). Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Переменное электрическое поле порождает вихревое магнитное поле, переменное магнитное поле порождает вихревое электрическое поле.

Электрические и магнитные поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитных волн в вакууме.

Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит

При изменении тока в проводнике, а изменение тока происходит при изменении скорости зарядов, т. е. при движении их с ускорением. Скорость распространения электромагнитных волн в вакууме, по расчетам Максвелла, должна быть приблизительно равна 300 000 км/с.

Впервые опытным путем получил электромагнитные волны физик Генрих Герц, использовав при этом высокочастотный искровой разрядник (вибратор Герца). Герц опытным путем определил также скорость электромагнитных волн. Она совпала с теоретическим определением скорости волн Максвеллом. Простейшие электромагнитные волны - это волны, в которых электрическое и магнитное поля совершают синхронные гармонические колебания.

Конечно, электромагнитные волны обладают всеми основными свойствами волн.

Они подчиняются закону отражения волн: угол падения равен углу отражения. При переходе из одной среды в другую преломляются и подчиняются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломления второй среды относительно первой.

Явление дифракции электромагнитных волн, т. е. отклонение направления их распространения от прямолинейного, наблюдается у края преграды или при прохождении через отверстие. Электромагнитные волны способны к интерференции. Интерференция - это способность когерентных волн к наложению, в результате чего волны в одних местах друг друга усиливают, а в других местах - гасят. (Когерентные волны - это волны, одинаковые по частоте и фазе колебания.) Электромагнитные волны обладают дисперсией, т. е. когда показатель преломления среды для электромагнитных волн зависит от их частоты. Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что эти волны являются поперечными.

При распространении электромагнитной волны векторы напряженности Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис. 43).

Возможность практического применения электромагнитных волн для установления связи без проводов продемонстрировал 7 мая 1895 г. русский физик А. Попов. Этот день считается днем рождения радио. Для осуществления радиосвязи необходимо обеспечить возможность излучения электромагнитных волн. Если электромагнитные волны возникают в контуре из катушки и конденсатора, то переменное магнитное поле оказывается связанным с катушкой, а переменное электрическое поле - сосредоточенным между пластинами конденсатора. Такой контур называется закрытым (рис. 44, а).

Закрытый колебательный контур практически не излучает электромагнитные волны в окружающее пространство. Если контур состоит из катушки и двух пластин плоского конденсатора, то под чем большим углом развернуты эти пластины, тем более свободно выходит электромагнитное поле в окружающее пространство (рис. 44, б). Предельным случаем раскрытого колебательного контура является удаление пластин на противоположные концы катушки. Такая система называется открытым колебательным контуром (рис. 44, в). В действительности контур состоит из катушки и длинного провода - антенны.

Энергия излучаемых (при помощи генератора незатухающих колебаний) электромагнитных колебаний при одинаковой амплитуде колебаний силы тока в антенне пропорциональна четвертой степени частоты колебаний. На частотах в десятки, сотни и даже тысячи герц интенсивность электромагнитных колебаний ничтожно мала. Поэтому для осуществления радио- и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.

При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс - детектирование. При радиоприеме из принятого антенной приемника модулированного сигнала нужно отфильтровать звуковые низкочастотные колебания.

С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов. Большую роль в современном морском флоте, авиации и космонавтике играет радиолокация. В основе радиолокации лежит свойство отражения волн от проводящих тел. (От поверхности диэлектрика электромагнитные волны отражаются слабо, а от поверхности металлов почти полностью.)

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png