Разница между активными и пассивными инфракрасными датчиками

Инфракрасные датчики с каждым днем находят все большее распространение. Осознаете ли вы это или нет, но вы, вероятно, использовали инфракрасный (ИК) датчик в своей жизни не раз. Большинство из нас переключают телевизионные каналы с помощью пульта дистанционного управления, который излучает ИК свет, и многие из нас проходят через датчики безопасности, которые обнаруживают движение через инфракрасное излучение.



Производители широко используют ИК-датчики, и вы, вероятно, видели их на работе в автоматизированных гаражных воротах. На сегодняшний день выделяют два типа инфракрасных датчиков – активные и пассивные. В данном материале мы расскажем о различиях между активными и пассивными ИК-датчиками и их областями применения.


Принцип работы ИК-датчика прост. В стандартном ИК-датчике излучатель отправляет невидимый свет на приемник, находящийся на некотором расстоянии. Если приемник не получает сигнал, датчик указывает, что объект находится между ними. Но чем же именно отличаются пассивные и активные датчики?


Вы можете предположить, что пассивные ИК-датчики менее сложны, чем их активные коллеги, но вы ошибаетесь. Функциональность пассивного ИК-датчика может быть сложнее понять. Во-первых, все (люди, животные, даже неодушевленные объекты) излучают определенное количество ИК-излучения. ИК-излучение, которое они испускают, связано с теплом и материальным составом тела или объекта. Люди не могут видеть ИК, но люди разработали электронные устройства обнаружения, чтобы регистрировать эти невидимые сигналы.




Пассивные ИК-датчики (PIR-датчики) используют пару пироэлектрических сенсоров для определения тепловой энергии в окружающей среде. Эти два сенсора установлены рядом друг с другом, и когда разность сигналов между ними изменяется (например, если человек входит в комнату), датчик включается. ИК-излучение фокусируется на каждом из двух пироэлектрических сенсоров, используя серию объективов, сконструированных как корпус датчика. Эти линзы расширяют зону восприятия устройства.


В то время как установка объектива и электроника датчика являются сложной технологией, эти устройства просты в использовании в практическом применении. Вам нужен только источник питания и линия заземления, чтобы датчик выдавал дискретный выход, который достаточно силен для использования микроконтроллером. Типичные настройки включают в себя добавление потенциометров для регулирования чувствительности и настройки времени, в течение которого PIR остается включенным после его срабатывания.


Вы обычно будете встречать PIR-датчики в охранных сигнализациях и системах автоматического освещения. Эти приложения не требуют, чтобы датчик обнаруживал конкретное местоположение объекта, он просто обнаруживает движущиеся объекты или людей в определенной области.


Хотя PIR-датчики превосходны для своих задач, если вы хотите обнаружить движение в целом, но они не дадут вам больше информации об объекте. Чтобы узнать больше, вам понадобится активный ИК-датчик. Для настройки активного ИК-датчика требуется как излучатель, так и приемник, но этот метод измерения проще, чем его пассивный аналог. Вот как активный ИК работает на базовом уровне. ИК-излучатель выдает луч света, обращенный к встроенному приемнику. Если ничего не мешает, приемник видит сигнал. Если приемник не видит ИК-луч, он обнаруживает, что объект находится между излучателем и приемником и, следовательно, тот присутствует в контролируемой области.




Один вариант стандартного активного ИК-датчика использует излучатель и приемник, обращенные в одном направлении. Оба установлены очень близко друг к другу, чтобы приемник мог обнаружить отражение излучения от объекта, когда он входит в область. Фиксированный рефлектор отправляет сигнал обратно. Этот метод реплицирует установку отдельных блоков излучателя и приемника, но без необходимости установки удаленного электрического компонента. Каждый метод имеет свои преимущества и недостатки на основе материала, который датчик будет обнаруживать, и других конкретных обстоятельств.


Активные ИК-датчики очень распространены в промышленных условиях. В этих приложениях пара излучателей и приемников может точно отметить, находится ли объект, например, в определенном положении на конвейере. Вы также можете найти активные инфракрасные датчики в системах безопасности гаражных ворот, которые предотвращают травмы или механический сбой из-за препятствий на пути двери. Независимо от вашего приложения, имеется множество инфракрасных датчиков, доступных в пассивных и активных конфигурациях в соответствии с вашими потребностями.

Для целей охраны имущества используется большая номенклатура разнообразных технических средств, среди которых особое место занимают охранные извещатели.

Охранные извещатели - это своего рода «чувствительные рецепторы» системы охранной сигнализации, которые призваны обнаружить преступника в охраняемом помещении, сформировать сигнал тревоги и передать его в охранную систему для принятия мер реагирования.

От того, какие извещатели используются в системе охраны офиса или квартиры, напрямую зависит безопасность имущества клиента, а в отдельных случаях - безопасность его жизни и здоровья.

Действие извещателей основано на использовании различных физических принципов. Можно выделить 2 основных типа извещателей:

1. Пассивные извещатели, которые сами не являются источниками волн различной физической природы (электромагнитных, акустических, пр.).

2. Активные извещатели, являющиеся источниками таких волн.

Очевидные преимущества пассивных извещателей - это их экологическая чистота и низкое энергопотребление. Однако в ряде случаев, в частности для повышения достоверности формируемого извещателем сигнала тревоги и минимизации числа ложных срабатываний, используют извещатели второго типа. При этом в современных извещателях, как правило, активный и пассивный способ работы совмещаются в одном приборе.

По физическому принципу действия извещатели можно подразделить на следующие группы.

Инфракрасные - извещатели, которые обнаруживают тепловое (инфракрасное) излучение человеческого тела и формируют сигнал тревоги в случае, когда источник теплового излучения движется.

Ультразвуковые - извещатели, излучающие ультразвуковые колебания и принимающие сигнал, отраженный от окружающих предметов. Формирование тревожного сигнала происходит в случае возникновения движения в контролируемой зоне.

Радиоволновые - извещатели, излучающие в диапазоне ультракоротких радиоволн. Их принцип работы аналогичен принципу ультразвуковых извещателей.

Барометрические - извещатели, формирующие сигнал тревоги при скачкообразном падении атмосферного давления в охраняемом помещении, которое может произойти в случае открытия двери или окна.

Акустические - извещатели, формирующие сигнал тревоги при регистрации в охраняемой зоне характеристического звука. Чаще всего это звук разбития оконного стекла.

Сейсмические - извещатели, устанавливаемые на стену или другую конструкцию и формирующие сигнал тревоги в случае регистрации в этой конструкции характеристических колебаний, возникающих при попытке разрушения преграды известными способами и инструментами (отбойный молоток, абразивный инструмент, газовый резак, «кислородное копье», взрывчатка, т.п.).

Инерционные - извещатели, в которых сигнал тревоги формируется с использованием инерционных свойств предметов и как правило при механическом воздействии на охраняемый объект, например автомобиль (покачивание, толчки). К группе инерционных относятся вибрационные и ударноконтактные извещатели.

Пьезоэлектрические - различные извещатели, использующие в своей работе пьезоэлектрические материалы, которые обладают свойством наведения разности потенциалов на противоположных сторонах пьезоэлектрического кристалла при его деформации. К пьезоэлектрическим относятся контактные извещатели контроля разбития стекла, извещатели контроля неподвижности установленных (скульптура) или подвешенных (картины) предметов и т.д.

Магнитоконтактные - извещатели, формирующие сигнал тревоги при размыкании геркона вследствие удаления от него магнитного элемента.

Устанавливаются как правило на окна и входные двери.

Электроконтактные - извещатели, которые формируют сигнал тревоги при размыкании электрического контакта. В настоящее время используются как правило в системах тревожной сигнализации и работают в ручном режиме.

Комбинированные - извещатели, которые сочетают в себе два или более физических принципа действия (инфракрасный и ультразвуковой, инфракрасный и радиоволновой, акустический и магнитоконтактный и пр.). Использование двух физических принципов действия зачастую позволяет повысить помехозащищенность извещателя, исключить ложные срабатывания.

Ультразвуковые и радиоволновые извещатели относятся к активному, а все остальные - к пассивному типу извещателей.

Кроме указанных существуют извещатели, использующие иные физические принципы действия: емкостные, индуктивные, электромагнитные и пр.

К изложенному необходимо добавить, что инфракрасные и радиоволновые извещатели могут быть однопозиционными (для контроля движения в определенном объеме) и двухпозиционными (для контроля движения через ограждение). Двухпозиционные извещатели состоят из конструктивно обособленных передатчика и приемника электромагнитных волн и используются для охраны периметров; формирование тревожного сигнала в них происходит при пересечении человеком инфракрасного или радиолуча. В данном случае мы имеем дело с активным инфракрасным извещателем.

В настоящей статье будут рассмотрены принцип работы и конструктивные особенности пассивных инфракрасных извещателей, которые по праву пользуются большой популярностью у потребителей и являются наиболее распространенными.

Пассивные инфракрасные извещатели предназначены для обнаружения человека, находящегося в пределах зоны чувствительности. Основная задача извещателя - обнаружить инфракрасное излучение человеческого тела. Как видно из рисунка 1, тепловое излучение человеческого тела находится в пределах спектрального диапазона электромагнитного излучения с длинами волн 8-12 микрон. Это так называемое равновесное свечение человеческого тела, максимум длины излучения которого полностью определяется температурой и для 37°С соответствует приблизительно 10 микронам. Существует целый ряд физических принципов и соответствующих устройств, которые применяются для регистрации излучения в указанном спектральном диапазоне. Для пассивных инфракрасных извещателей следует использовать чувствительный элемент с оптимальным соотношением чувствительность/стоимость. Таким чувствительным элементом является пироэлектрический фотоэлемент.


Рис. 1. Спектральная зависимость интенсивности свечения: солнца, флюоресцентной лампы, лампы накаливания, человеческого тела и спектра пропускания ряда блокирующих видимый свет фильтров: кремниевый фильтр, просветленный кремниевый фильтр, фильтр с длиной волны среза 5 мкм и фильтр с длиной волны среза 7 мкм.

Явление пироэлектричества состоит в возникновении наведенной разности потенциалов на противоположных сторонах пироэлектрического кристалла при его неравновесном кратковременном нагревании. Со временем электрические заряды из внешних электрических цепей и перераспределение зарядов внутри кристалла приводят к релаксации наведенного потенциала. Из вышесказанного следует:

частота прерывания (Гц).



Рис. 2. Зависимость величины сигнала отклика пироэлемента от частоты прерывания регистрируемого теплового ИК-сигнала.

1. Для эффективной пироэлектрической регистрации теплового излучения необходимо применять прерыватель с оптимальной частотой прерывания излучения около 0,1 Гц (рис. 2). С другой стороны это означает, что если используется безлинзовая конструкция пироэлектрического элемента, он сможет зарегистрировать человека лишь при его входе в пределы диаграммы направленности (рис. 3, 4) и при выходе из нее со скоростью 1 - 10 сантиметров в секунду.



Рис. 3, 4. Форма диаграммы направленности спаренного корпусированного пироэлектрического элемента в горизонтальной (Рис. 3.) и вертикальной (Рис. 4.) плоскостях.

2. Для повышения чувствительности пироэлектрического элемента к величине перепада температур (разница между фоновой температурой и температурой тела человека) необходимо сконструировать его, выдержав минимально возможные размеры, с целью уменьшения количества тепла, необходимого для заданного повышения температуры чувствительного элемента. Размеры чувствительного элемента нельзя чрезмерно уменьшать, так как это приведет к ускорению релаксационных характеристик, что эквивалентно уменьшению чувствительности. Существует оптимальный размер. Минимальная чувствительность обычно находится на уровне 0,1°С для пироэлемента размером 1 х 2 мм и толщиной несколько микрон.

3. Для повышения термостабильности работы извещателя и отсечки влияния медленно меняющейся температуры окружающей среды чувствительный элемент изготавливается в виде парной конструкции электрически встречно включенных элементов, расположенных на общей подложке. Внешний вид чувствительного пироэлемента приведен на рис. 5. Как видно из рисунка, чувствительный элемент изготавливается в типовом корпусе обычного полупроводникового электронного элемента. В корпусе формируется окно из материала, не пропускающего извне излучения с длиной волны менее 1 - 7 микрон в зависимости от типа используемого фильтрующего материала (см. рис. 1). Мировым лидером по производству пироэлектрических элементов является фирма HAMAMATSU (Япония). В Украине пироэлементы производит СКТБ Института физики НАН Украины.


Рис. 5. Внешний вид чувствительного элемента пироэлектрического пассивного ИК-извещателя.

Можно четко сформулировать условия обнаружения человека с помощью инфракрасного извещателя. Инфракрасный извещатель предназначен для обнаружения движущихся объектов с температурой, отличной от фонового значения. Диапазон регистрируемых скоростей перемещения: 0,1 - 1,5 м/сек. Таким образом инфракрасный извещатель не регистрирует неподвижные объекты, даже если их температура превышает уровень фона (неподвижный человек) или если объект с температурой, отличной от фона, перемещается таким образом, что не пересекает чувствительных зон извещателя (например перемещается вдоль чувствительной зоны).

Естественно, что высокая чувствительность инфракрасного извещателя достигается путем применения линзовой системы концентрации входящего излучения (рис. 6). В инфракрасном извещателе линзовая система выполняет две функции.



Рис. 6. Варианты формирования диаграммы направленности ИК-извещателей в зависимости от типа линзовой системы.

Во-первых, линзовая система служит для фокусировки излучения на пироэлектрическом элементе.

Во-вторых, она предназначена для пространственного структурирования чувствительности извещателя. При этом формируются пространственные зоны чувствительности, которые как правило имеют форму «лепестков», а их количество достигает нескольких десятков. Объект обнаруживается при каждом входе и выходе из чувствительных зон.

Обычно различают следующие виды диаграммы чувствительности, которую называют также диаграммой направленности.

1). Стандартная - веерная по азимуту и многоярусная по углу места (рис. 6а).

2). Узконаправленная - одно- или двухлучевая дальнодействующая по азимуту и многоярусная по углу места (рис. 6б).

3). Штороподобная - узконаправленная по азимуту и веероподобная по углу места (рис. 6в).

Существует также круговая диаграмма направленности (в частности, для извещателей, устанавливаемых на потолке помещения), а также ряд других.

Рассмотрим варианты конструктивного исполнения системы формирования диаграммы направленности (рис. 7). Эта оптическая система может быть либо линзовой, либо зеркальной. Изготовление обычной линзовой системы с учетом требования формирования пространственно структурированной диаграммы направленности является дорогостоящей задачей, поэтому обычные линзы в пассивных инфракрасных датчиках не применяются. Применяются так называемые линзы Френеля. В обычной линзе для направленного отклонения света (фокусировки) используется специальная сферическая форма поверхности, материал линзы имеет коэффициент оптического преломления, отличный от коэффициента преломления окружающей среды. В линзе Френеля используется явление дифракции, которое проявляется в частности в отклонении светового луча при прохождении через узкую щель. Линза Френеля изготавливается методом штамповки и поэтому стоит дешево. Недостатком применения линзы Френеля является неизбежная потеря половины энергии излучения в результате его дифракционного отклонения линзой в направлении, отличном от направления на пироэлектрический элемент.


Рис. 7. Конструктивные варианты исполнения охранных пассивных ИК-извещателей: с линзой Френеля и с зеркальной фокусирующей системой.

Зеркальная линза более эффективна по сравнению с линзой Френеля. Она изготавливается из пластической массы методом штамповки с последующим покрытием структурированной поверхности светоотражающим покрытием, не изменяющим своих свойств со временем (до 10 лет). Наилучшим покрытием является золото. Отсюда и более высокая, приблизительно в два раза, стоимость пассивных инфракрасных извещателей с зеркальной системой по сравнению с линзовой. Кроме того извещатели с зеркальной системой имеют большие габариты по сравнению с извещателями, оснащенными линзами Френеля.

Зачем применяют более дорогие извещатели с зеркальной системой концентрации входящего излучения? Важнейшей характеристикой извещателя является его чувствительность. Чувствительность практически одинакова в перерасчете на единицу площади входного окна извещателя. Это, в частности, означает, что если проектируют пассивный инфракрасный извещатель с повышенной чувствительностью, то вынуждены увеличивать размер зоны концентрации излучения - площадь входного окна, а, значит, и сам извещатель (максимальная чувствительность современных пассивных ИК-извещателей позволяет производить обнаружение человека на расстоянии до 100 метров). Если положить наличие потерь полезного сигнала за счет несовершенства линзы, то необходимо повысить коэффициент усиления электронной схемы обработки электрического сигнала, формируемого чувствительным элементом. При условии одинаковой чувствительности коэффициент усиления электрической схемы в зеркальном извещателе в два раза меньше, чем в извещателе с линзой Френеля. Это обозначает, что в извещателях с линзой Френеля выше вероятность ложного срабатывания, вызванная помехами в электронной схеме.

Еще раз вернемся к оптической схеме извещателя. Кроме линзовой системы и оптического «отрезающего» фильтра, установленного непосредственно в корпусе чувствительного элемента, для уменьшения ложных срабатываний, вызванных всевозможными источниками излучения, применяют различные оптические фильтрующие элементы («белый» фильтр, «черное» зеркало и т.п.), задача которых минимизировать попадание постороннего оптического излучения на поверхность пиро-электрического элемента.

Входное окно большинства ИК-извещателей выполнено в виде «белого» фильтра. Этот фильтр изготовлен из материала, рассеивающего видимый свет, но в то же время не влияющего на распространение инфракрасного излучения.

В извещателях с зеркальной системой концентрации входящего излучения дополнительный поглощающий фильтр размещается непосредственно на зеркале. Такое зеркало отлично отражает ИК-излучение и эффективно поглощает видимую часть спектра. Внешне оно имеет черный цвет, поскольку не отражает видимый свет, и поэтому называется «черным» зеркалом. Использование дополнительного, по отношению к непосредственно размещаемому на корпусе светочувствительного элемента, поглощающего фильтра позволяет уменьшить тепловую нагрузку на чувствительный элемент от поглощенной энергии падающего на него излучения, поскольку дополнительный поглощающий фильтр и чувствительный пироэлемент пространственно разнесены.

Совершенствуются и линзы Френеля. Прежде всего путем придания линзе сферической формы, минимизирующей аберрации по сравнению со стандартной цилиндрической формой. Кроме этого применяется дополнительное структурирование диаграммы направленности в вертикальной плоскости за счет мультифокусной геометрии линзы: в вертикальном направлении линза разделена на три сектора, каждый из которых независимо собирает излучение на один и тот же чувствительный элемент.

Весьма актуальной является проблема противодействия физическому экранированию извещателя, которое сводится к установке перед ним экрана, перекрывающего его «поле зрения» (так называемое «маскирование»). Технические средства противодействия маскированию составляют систему антимаскирования извещателя. Некоторые извещатели оснащаются встроенными ИК- светодиодами. В случае, если в зоне обнаружения извещателя, а следовательно в зоне действия светодиодов, возникает преграда, то отражение излучения светодиодов от преграды воспринимается извещателем как сигнал тревоги. Более того, периодически (в существующих моделях - один раз в 5 часов) происходит самотестирование извещателя на предмет наличия отраженного излучения ИК-светодиодов. В том случае, если при самотестировании на выходе электрической схемы не появится необходимый сигнал, то срабатывает схема генерации сигнала тревоги. Извещатели с функциями антимаскирования и самотестирования устанавливаются на наиболее ответственных объектах, в частности там, где возможно противодействие работе системы охраны.

Еще один путь повышения помехоустойчивости извещателя - это применение квадратичного чувствительного пироэлемента совместно с использованием микропроцессорной обработки сигнала. Разные фирмы решают проблему создания квадратичного элемента различным образом. Например фирма «OPTEX» применяет два обычных сдвоенных пироэлемента, расположенных рядом. Основная задача системы - выделить и «отсеять» события, вызванные одновременной засветкой обоих пироэлементов (например свет фар) или электрической помехой.

Фирма «ADEMCO» применяет специальную конструкцию счетверенного пироприемника, где четыре чувствительных элемента расположены в одном корпусе. При этом встречно включены пироэлементы, расположенные как в горизонтальной плоскости, так и в вертикальной. Такой извещатель не будет реагировать на мелких животных (мыши, крысы), которые зачастую бывают в складских помещениях и являются одной из причин ложных срабатываний (рис. 8). Использование разнополярного подключения чувствительных элементов в таком извещателе делает невозможным «шумовое» ложное срабатывавние.



Рис. 8. Работа многоканальной системы селекции шумовых импульсов на примере работы квадратичного охранного пассивного ИК-извещателя.

Фирма «ADEMCO» настолько уверена в совершенстве разработанного ею квадратичного извещателя, что объявила о выплате премии, если обладатель извещателя зафиксирует его ложное срабатывание.

Еще одной мерой предосторожности является применение проводящих пленочных покрытий, наносимых на внутреннюю поверхность входного окна для противодействия радиочастотным помехам.

Эффективным методом повышения помехоустойчивости извещателей является применение так называемой «двойной технологии», которая заключается в использовании комбинированного извещателя, реализующего пассивный инфракрасный и активный радиоволновой (иногда - ультразвуковой) принципы действия.

Радиоволновой (ультразвуковой) блок фиксирует наличие допплеровского сдвига в частотном спектре отраженного радиосигнала (ультразвука), обусловленного движением объекта. Применение таких извещателей наиболее эффективно при последующей микропроцессорной обработке поступающих сигналов. Эти извещатели не рекомендуется применять в помещениях, где находятся люди, так как излучение оказывает вредное влияние на здоровье.

Извещатели «двойной технологии» используются при охране помещений, в которых имеются небольшие домашние животные: кошки, собаки, - а также при наличии в охраняемом помещении периодически включаемых неподвижных теплоизлучающих устройств: факсимильный аппарат, калорифер, вентилятор и т.п.

Мы рассмотрели основы работы и конструкцию пассивных инфракрасных охранных извещателей. В целом все конструктивные ухищрения, применяемые теми или иными фирмами, имеют одну цель - уменьшить вероятность ложного срабатывания извещателя, поскольку ложное срабатывание ведет к неоправданным затратам на реагирование по тревоге, а также влечет моральный ущерб для владельца охраняемого имущества.

Извещатели постоянно совершенствуются. На современном этапе основными направлениями совершенствования извещателей является повышение их чувствительности, уменьшение числа ложных срабатываний, дифференциация подвижных объектов по признаку санкционированного или несанкци-онированного пребывания в зоне обнаружения.

Как источник электрического сигнала, каждый чувствительный пироэлемент является также источником случайных шумовых сигналов. Поэтому актуальной является задача минимизации флуктуационных помех, решаемая схемотехническим путем. Используются разные методы борьбы с шумами.

Во-первых, в извещателе устанавливаются электронные дискриминаторы входного сигнала по верхнему и нижнему уровню, что минимизирует частоту появления помехи (рис. 9).



Рис. 9. Пороговая система двухстороннего ограничения уровня шумового сигнала охранного пассивного ИК-извещателя.

Во-вторых, применяется режим синхронного учета импульсов, поступающих по обоим оптическим каналам. Причем схема составляется таким образом, что полезный оптический сигнал на входе приводит к появлению положительного электрического импульса по одному каналу и отрицательного по другому. На выходе применяется схема вычитания. Если источником сигнала является шумовой электрический сигнал - он будет идентичен для двух каналов и на выходе результирующий сигнал будет отсутствовать. Если источником сигнала является оптический сигнал, то выходной сигнал будет суммироваться.

В третьих, применяется метод счета импульсов. Сущность этого метода состоит в том, что одиночный сигнал регистрации объекта не приводит к формированию сигнала тревоги, а устанавливает извещатель в так называемое «предтревожное состояние». Если в течении определенного времени (на практике это - 20 секунд) повторно не поступит сигнал регистрации объекта, происходит сброс предтревожного состояния извещателя (рис. 10).



Рис. 10. Работа системы счетчика импульсов.

Как правило все извещатели требуют подключения электрического питания 12 В постоянного тока. Ток потребления типового извещателя находится в пределах 15 - 40 мА. Сигнал тревоги формируется и передается на охранную централь посредством выходного реле с нормально замкнутыми контактами.

Промышленностью выпускаются извещатели для установки в помещении, а также на открытых площадках; последние имеют соответствующее климатическое исполнение. Типовой срок службы пассивных инфракрасных извещателей - 5 - 6 лет.

Детекторы движения это основа системы безопасности, их тип и технические характеристики определяют уровень ее эффективность и сложность несанкционированного проникновения.

Наиболее распространенными детекторами, применяемыми в системах сигнализации, являются пассивные инфракрасные датчики движения.

Их основная функция – объемный контроль охраняемого пространства всего помещения.

Принцип и условия срабатывания


Устройство регистрирует динамику изменения теплового излучения объекта и общего фона. Мониторинг осуществляется за определенный промежуток времени.

Для срабатывания необходимо совмещение определенных условий. Во-первых, изменение положения объекта в пространстве, контролируемом детектором.

Во-вторых, траектория должна проходить перпендикулярно направлению ИК-излучения, генерируемого устройством.

В-третьих, расстояние от источника излучения должно быть достаточным для его уровня восприятия, то есть он должен определить температурную разницу между объектом (с учетом одежды) и окружающим фоном.

Чувствительность


Основной сканирующий элемент устройства — пироприемник, имеет сдвоенную структуру, и поэтому в плоскости излучения происходит парное расщепление каждого луча.

Исходя из особенностей строения различных моделей инфракрасных датчиков движения, зоны чувствительности различных моделей могут иметь разную конфигурацию. Это могут быть точечные лучи, направленные в небольшой угловой сегмент, формирующие отдаленную точку детекции.

Несколько таких лучей расположенных, горизонтальной или вертикальной плоскости формируют «вертикальный барьер» или «сканирующую поверхность», она может быть горизонтальной или иметь наклон.

Одиночный широкий луч, испускаемый в горизонтальной, или вертикальной плоскости формирует «сканирующий занавес».

Кроме того, интенсивность генерируемого излучения влияет на протяженность сканируемой зоны срабатывания. Обзорный сектор может составлять от 30 0 до 180 0 для настенных детекторов и круговой – 360 0 для потолочных моделей. Так же возможна регуляция количества лучей, и угла их наклона, до 90 0 .

Такое разнообразие обусловлено требованиями к эксплуатации в различных условиях и высоком уровне эффективности, который должен обеспечивать равномерную чувствительность детектора по всему охраняемому объему срабатывания.

Оптические элементы


Чувствительность детектора зависит от процента перекрытия площади луча. Соответственно на расстоянии 15-20 м для выявления объекта размером с человека необходим луч шириной не более 100.

Но при приближении к устройству уровень чувствительности будет возрастать, и с расстояния 5 м тревогу может поднять обычная мышь.

Для распределения равномерности чувствительных зон оптические элементы формируют несколько секторов излучения с различной шириной и направлением под разными углами. Само устройство, как правило, крепиться немного выше человеческого роста.

Следовательно, весь объем зоны обнаружения, разбит на несколько секторов, с различной степенью чувствительности лучей, подобранных таким образом, чтобы общая чувствительность устройства не изменялась от удаления или приближения к нему.

Проблема равномерности чувствительности пассивных ИК-датчиков движения, решается с помощью оптических рассеивателей.

Такая система может быть настроена более точно, что дает возможность увеличения ее чувствительности на дальних дистанциях до 60%. Кроме того, сегментная структура позволяет легче настроить защиту ближней «саботажной» зоны.

Использование триплексной технологии в зеркалах позволяет использовать инфракрасные датчики движения в помещениях, где есть домашние питомцы.

Современные высокоэффективные модели используют комбинацию обеих систем, где линза Френеля контролирует среднюю зону, а устройства зеркальной оптики дальние подходы и саботажную зону.

Пироприемник и помехи


Пироэлектрический преобразователь – это полупроводниковое устройство, которое способно регистрировать разницу в температурах и преобразовать ее в электрический импульс.

В таких датчиках используются пары, а в некоторых моделях две пары пироэлектрических элементов. Это позволяет снизить количество ложных срабатываний, которые вызывает простое повышение температуры в помещении.

В парных пироприемниках срабатывание происходит только когда пересекаются один из лучей, обработка происходит по дифференциальному алгоритму, вычитая сигнал одного пироэлемента из сигнала другого.

Основные виды помех, которые могут вызвать ложное срабатывание встраиваемых ИК датчиков движения:

  • насекомые, попавшие внутрь или на корпус датчика;
  • домашние животные;
  • вибрации и сотрясения;
  • радио и электромагнитные помехи;
  • направленные и яркие источники света;
  • кондиционеры, батареи, тепловые завесы и другое климатическое оборудование;
  • частичное отражение ИК-лучей от внутренней поверхности устройства;
  • нагревание внутренних деталей детектора.

Блок обработки


Аналоговое, цифровое или комбинированное устройство, обеспечивающее обработку поступающих от прироприемника сигналов с целью выделения импульса, вызванного нарушителем, из общего потока помех.

Алгоритм обработки основан на анализе формы, длительности и величины сигнала. Сигнал от человеческой фигуры является симметричным и двухполярным, в отличие от шумовых несимметричных сигналов.

Величина сигнала – основной параметр, по которому происходит анализ поступающего импульса.

В недорогих моделях БО анализируют только его, сравнивая с пороговым показателем и подсчитывая количество срабатываний. После превышения определенного числа за единицу времени включается сигнал тревоги.

Такой метод несовершенен и приводит к большому количеству ложных срабатываний от вибраций или электромагнитных помех.

Если настроить низкую чувствительность, то в датчиках с зоной контроля типа «одиночная завеса» может не произойти срабатывания вообще, если будет пересечен всего один луч.

В более дорогих датчиках дополнительно анализируется полярность и симметрия формы поступающего сигнала.

Методы защиты детекторов движения от помех


Специальный светофильтрующий пластик внешних линз позволяет защитить пироэлемент от белого света, для защиты от насекомых между пироприемным элементом и линзой монтируют герметичную камеру.

Так же практически все современные модели оборудованы реле вскрытия, которое сигнализирует о взломе устройства.

Типичная бытовая модель со средним функционалом


NV500 компании PARADOX

Оптика – гибридная цилиндро-сферическая линза с сегментами линз Френеля с углом обзора 1020.

Диаграмма направленности рассчитана на обеспечение равномерной чувствительности по всему контролируемому объему. Super Creep Zone – функция контроля саботажной зоны. Цифровая блокировка детекции животных до 16 кг.

Двухуровневый подсчет импульсов по алгоритму APSP. Автокомпенсация температуры. Автоматическая цифровая регулировка чувствительности 5ти уровней. Защита от вскрытия – твердотельное реле.

Датчики такого типа можно использовать не только в , но и в устройстве автоматического включения освещения, и системы раннего оповещения и т. д.

Электронный датчик движения что такое? Ответ очевиден – чувствительный прибор, как правило, из класса устройств систем безопасности. Правда, есть также конструкции, предназначенные, к примеру, для управления источниками освещения и другими устройствами. Работа датчика движения строится по принципу генерации сигнала в случае обнаружения какого-либо движения в границах контролируемой зоны. Приборы делаются на базе разных технологий. Применение таких чувствительных сенсоров становится всё более востребованным и не только в хозяйственно-промышленной сфере, но также в сфере бытовой. Рассмотрим, какие выпускаются устройства, а также примеры использования.

Рассматриваемые в зависимости от способа обнаружения движения объекта. Существуют две классификации приборов:

  1. Активные.
  2. Пассивные.

Детекторы активного действия

Детекторы активного действия являются устройствами, функционирующими по принципу радарной схемы. Этот тип приборов излучает радиоволны (микроволны) в границах контролируемой зоны. Микроволны отражаются от существующих объектов и принимаются сенсором датчика движения.

Упрощённая схематика конструкции сенсора активного действия: 1 – источник (передатчик) микроволнового излучения; 2 – приёмник отражённого микроволнового сигнала; 3 – сканируемый объект

Если в зоне контроля обнаруживается движение в момент трансляции датчиком микро-излучения, создаётся эффект — доплеровский (частотный) сдвиг волны, который воспринимается вместе с отражённым сигналом.

Этот фактор сдвига указывает на то, что волна отразилась от движущегося объекта. Будучи электронным устройством, датчик сканирования движения способен вычислить такие изменения и отправить электрический сигнал:

  • в систему сигнализации,
  • на переключатель света,
  • на другие устройства,

схематично подключенные к датчику обнаружения движения.

Активные микроволновые датчики сканирования движения, в основном используются, к примеру, на автоматически работающих дверях торговых центров. Но вместе с тем этот тип приборов удачно подходит для домашних охранных систем или коммутации внутреннего освещения.

Этот вид электроники не подходит для коммутации наружного освещения или аналогичных применений. Обусловлено это массовостью активных объектов в условиях улицы, которые постоянно двигаются.

Например, движение ветвей деревьев от ветра, перемещение мелких животных, птиц и даже крупных насекомых, фиксируются активным сенсором, что приводит к ошибке срабатывания.

Детекторы пассивного действия (PIR – passive infrared)

Пассивные датчики движения – полная противоположность активным сенсорам. Пассивные системы ничего не посылают. инфракрасную энергию.


Конструктивное исполнение сенсора пассивного типа: 1 – Мульти объектив; 2 – Оптический фильтр; 3 – счетверённый инфракрасный элемент; 4 – металлический корпус; 5 – инфракрасное излучение; 6 – стабилизированный источник питания; 7 – усилитель; 8 — компаратор

Инфракрасные (тепловые) уровни энергии воспринимаются пассивными детекторами, непрерывно сканирующими область контроля или объект.

Учитывая, что инфракрасное тепло излучается не только от живых организмов, но также от любого объекта с температурой выше абсолютного нуля, можно сделать выводы о пригодности применения.

Эти датчики обнаружения движения не были бы эффективными, если бы их можно было активировать маленьким животным или насекомым, которое перемещается в диапазоне обнаружения.

Однако большинство существующих пассивных датчиков допустимо настроить на восприятие движение так, чтобы контролировать объекты с определенным уровнем испускаемого тепла. Например, прибор вполне можно настроить только на восприятие людей.

Сенсоры гибридной (комбинированной) конструкции

Комбинированный (гибридный) технологический датчик сканирования движения представляет собой систему комбинации активной и пассивной схемы. активирует действие только в случае обнаружения движения и той и другой схемой.

Комбинированные системы видятся полезными под применение в модулях сигнализации, так как уменьшают вероятность срабатывания на ложных тревогах.

Вместе с тем, эта технология обладает своими недостатками. Комбинированный прибор не в состоянии обеспечить такой же уровень безопасности, как отдельно взятые PIR и СВЧ-датчики.

Это очевидно, поскольку сигнал тревоги срабатывает только при обнаружении движения активным и пассивным датчиками одновременно.

Допустим, если злоумышленнику удастся каким-то способом предотвратить обнаружение одним из датчиков комбинированного прибора, движение останется незамеченным.

Соответственно, сигнал тревоги не будет отправлен на микропроцессор центральной системы сигнализации. На сегодня самым популярным типом комбинированных датчиков считается конструкция, где объединяются схемы PIR и микроволнового датчика.

Исполнение датчиков движения

Датчики сканирования на движение, разработанные и выпускаемые на текущий момент времени, обладают различными формами и габаритными размерами. Ниже приводятся несколько примеров исполнения устройств.

Пассивные инфракрасные конструкции (PIR) — пример

Одна из широко используемых конструкций, которые применяются в составе схем домашних системах безопасности.

Пассивные инфракрасные детекторы нацелены на отслеживание изменения уровня инфракрасной энергии, вызванного движением объектов (человека, домашних животных и т. п.).


Распространённая конструкция пассивного сенсора, которая отличается простейшей электронной схемой и не создаёт затруднений при подключении. Используются всего три электрических контакта

Сканеры пассивного действия изменчивостью источников тепла и солнечного света, поэтому PIR более подходит для обнаружения движения внутри помещений или в иной закрытой среде.

Активные инфракрасные датчики — пример

Активные инфракрасные детекторы используют структуру двунаправленной передачи. Одна сторона – передатчик, используется для испускания инфракрасного луча.

Другая сторона – приемник, используется для приема инфракрасного сигнала. Действие тревоги происходит при обнаружении прерывания луча, связывающего две точки.


Пример однолучевого активного детектора обнаружения подвижек. Между тем существуют конструкции более сложной конфигурации, благодаря которым есть возможность решать различные задачи

Активные датчики сканирования движения типа «Infra Red Beam» в основном устанавливаются снаружи (в условиях улицы).

Обнаружение происходит благодаря использованию теории передатчика и приемника. Важно, чтобы инфракрасный луч проходил через зону сканирования и доходил до приемника.

Ультразвуковой детектор — пример

Датчики сканирования движения с помощью ультразвука выпускаются конструкциями, способными работать как в активном, так и в пассивном режиме. Теоретически ультразвуковой детектор действует по принципу передачи-приёма.


Один из примеров конструкции на основе ультразвука. Универсальные системы, которыми поддерживается функциональность как в активном, так и в пассивном режимах

Посылаются высокочастотные звуковые волны, которые отражаются от предметов и воспринимаются сканирующим приёмным устройством прибора. Если последовательность звуковых волн прерывается, активный ультразвуковой датчик подаёт сигнал тревоги.

Применение датчиков обнаружения движения

Некоторые из ключевых применений детекторов, когда необходимо отслеживать движение:

  • аварийные сигналы вторжения
  • управление автоматическими воротами,
  • переключение освещения на входе,
  • аварийное освещение безопасности,
  • туалетные сушилки рук,
  • автоматическое открывание дверей и др.

Ультразвуковые датчики используются для управления камерой слежения жилой недвижимости или, например, для съемки живой природы.

Инфракрасные сенсоры применяются для подтверждения наличия продуктов на конвейерных лентах

Ниже приведён практический пример использования датчиков активного и пассивного обнаружения движения.

Контроллер уровня жидкости на ультразвуковых датчиках

На приведенной ниже схеме показано, как контроллер () управляет уровнем жидкости, используя ультразвуковой датчик.

Система работает, обеспечивая точные уровни жидкости в баке, управляя двигателем, определяя заданные пределы жидкости.


Практический пример реализации задачи на базе ультразвукового прибора и популярного набора Arduino, наглядно демонстрирующий ультразвуковой датчик движения что такое и как работает

Когда жидкость в резервуаре достигает нижнего и верхнего пределов, ультразвуковой датчик обнаруживает эти пределы и посылает сигналы на микроконтроллер.

Микроконтроллер запрограммирован таким образом, чтобы управлять реле, которым в свою очередь управляется двигатель насоса. За основу берутся сигналы предельных условий, заданных на ультразвуковом датчике движения.

Автоматическое открывание дверей на PIR

Как и в приведенной выше системе, автоматическая система открывания дверей с использованием датчика движения PIR. В этом случае обнаруживается присутствие людей и выполняется операция с дверьми (открытие или закрытие).


Другая схема, где задействован уже прибор пассивного действия. Здесь также используется популярный конструктор Arduino – инструмент удобный для экспериментов и построения реальных электронных систем

Детектором PIR обнаруживается присутствие людей, после чего отправляется сигнал обнаружения движения микроконтроллеру.

В зависимости от сигналов от датчика PIR, микроконтроллер управляет двигателем дверей в режимах прямого и обратного хода с помощью IC-драйвера.

Как обмануть ИК-детектор
Изначальный недостаток ИК-пассивного метода обнаружения движения: человек должен явно отличаться по температуре от окружающих предметов. При температуре в комнате 36,6º никакой детектор не отличит человека от стен и мебели. Хуже того: чем ближе температура в комнате к 36,6º, тем хуже чувствительность детектора. Большинство современных устройств частично компенсируют этот эффект, повышая усиление при температурах от 30º до 45º (да, детекторы успешно работают и при обратном перепаде – если в комнате +60º, детектор легко обнаружит человека, благодаря системе терморегуляции человеческий организм сохранит температуру около 37º). Так вот при температуре на улице около 36º (что часто встречается в южных странах) детекторы очень плохо открывают двери, либо, наоборот, из-за предельно поднятой чувствительности реагируют на малейшее дуновение ветра.
Более того, от ИК-детектора легко загородиться любым предметом комнатной температуры (листом картона) или надеть толстую шубу и шапку, чтобы не высовывались руки и лицо, и, если ходить достаточно медленно, ИК-детектор не заметит столь маленьких и медленных возмущений.
В интернете ходят и более экзотические рекомендации, типа мощной ИК-лампы, которая, если ее медленно включить (обычным диммером), загонит ИК-детектор в зашкал, после чего перед ним даже без шубы можно ходить. Тут, правда, следует отметить, что хорошие ИК-детекторы в таком случае выдадут сигнал неисправности.
Наконец, наиболее известная проблема ИК-детекторов – маскирование. Когда система снята с охраны, днем в рабочие часы, вы как посетитель приходите в нужное помещение (в магазин, например) и, поймав момент, пока никто не смотрит, загораживаете ИК-детектор бумажкой, заклеиваете непрозрачной самоклеющейся пленкой или заливаете краской из баллончика. Особенно это удобно человеку, который сам там работает. Кладовщик днем аккуратно загородил детектор, ночью влез в окно, все вынес, а потом убрал все и вызвал милицию – ужас, обокрали, а сигнализация не сработала.
Для защиты от такого маскирования существуют следующие технические приемы.
1. В совмещенных (ИК + микроволновый) датчиках есть возможность выдать сигнал неисправности, если микроволновый датчик обнаружил большой отраженный радиосигнал (кто-то подошел очень близко или протянул руку непосредственно к извещателю), а ИК-датчик при этом перестал выдавать сигналы. В большинстве случаев в реальной жизни это означает вовсе не злой умысел преступника, а халатность персонала – например, высокий штабель ящиков загородил извещатель. Впрочем, вне зависимости от злого умысла если извещатель загородили, это непорядок, и такой сигнал «неисправность» очень уместен.
2. В некоторых приборах приемно-контрольных есть алгоритм контроля, когда после снятия извещателя с охраны он обнаруживает движение. То есть отсутствие сигнала считается неисправностью, пока кто-то не пройдет перед датчиком и он не выдаст нормальный сигнал «есть движение». Эта функция не очень удобна, ведь нередко снимают с охраны все помещения, даже те, в которые сегодня никто входить не собирается, а получится, что вечером, чтобы поставить помещения снова на охрану, придется зайти во все комнаты, где никого днем не было, и помахать руками перед датчиками – ППК убедится, что датчики работоспособны, и милостиво разрешит поставить систему на охрану.
3. Наконец, есть функция под названием «ближняя зона», которая однажды была включена в требования отечественного ГОСТа и которую нередко ошибочно называют «антимаскинг». Суть идеи: у извещателя должен быть дополнительный датчик, глядящий прямо вниз, под извещатель, или отдельное зеркало, или специальная хитрая линза, в общем, чтобы не было мертвой зоны внизу. (Большинство извещателей имеют ограниченный угол обзора и в основном смотрят вперед и градусов 60 вниз, так что непосредственно под извещателем есть небольшая мертвая зона, на уровне пола примерно метр от стены.) Считается, что хитрый враг как-то сможет попасть в эту мертвую зону и оттуда загородить (замаскировать) линзу ИК-датчика, а потом уже нагло ходить по всей комнате. В реальности извещатель обычно устанавливают так, что в эту мертвую зону нет никакой возможности попасть, минуя области чувствительности датчика. Ну разве что сквозь стену, но против преступников, проникающих сквозь стену, не помогут дополнительные линзы.

Радиопомехи и прочие помехи
Как я уже говорил, ИК-датчик работает близко к пределу чувствительности, особенно при температуре в помещении, приближающейся к 35º С. Конечно, при этом он весьма подвержен влиянию помех. Большинство ИК-извещателей могут выдать ложную тревогу, если рядом с ними положить сотовый телефон и позвонить на него. На этапе установления связи телефон выдает мощные периодические сигналы с периодом, близким к 1 Гц (именно в этом диапазоне лежат типичные сигналы от человека, идущего перед ИК-датчиком). Несколько ватт радиоизлучения вполне сопоставимы с микроваттами теплового излучения человека.
Помимо радиоизлучения могут быть и оптические помехи, хотя линза ИК-датчика, как правило, непрозрачна в видимом диапазоне, но мощные лампы или 100 Вт автомобильные фары в соседнем спектральном диапазоне опять же вполне могут дать сигнал, сравнимый с микроваттами от человека в нужном диапазоне. Основная надежда при этом на то, что посторонние оптические помехи, как правило, плохо фокусируются и потому одинаково воздействуют на оба чувствительных элемента ИК-датчика, таким образом, извещатель может обнаружить помеху и не выдать ложный сигнал тревоги.

Пути совершенствования ИК-датчиков
Уже лет десять почти все охранные ИК-извещатели содержат достаточно мощный микропроцессор и потому стали менее подвержены воздействию случайных помех. Извещатели могут анализировать повторяемость и характерные параметры сигнала, долговременную стабильность фонового уровня сигнала, что позволило существенно повысить устойчивость к помехам.
ИК-датчики, в принципе, беззащитны против преступников за непрозрачными экранами, зато подвержены влиянию тепловых потоков от климатического оборудования и посторонней засветке (через окно). Микроволновые (радио) датчики движения, наоборот, способны выдавать ложные сигналы, обнаруживая движение за радиопрозрачными стенами, вне защищаемого помещения. Они также более подвержены влиянию радиопомех. Совмещенные ИК + микроволновые извещатели могут использоваться как по схеме «И», что значительно снижает вероятность ложных тревог, так и по схеме «ИЛИ» для особо ответственных помещений, что практически исключает возможность их преодоления.
ИК-датчики не могут отличить маленького человека от большой собаки. Существует ряд датчиков, в которых значительно снижена чувствительность к движениям небольших объектов за счет применения 4-площадочных сенсоров и специальных линз. Сигнал от высокого человека и от низкой собаки в таком случае можно с некоторой вероятностью различить. Надо хорошо понимать, что стопроцентно отличить пригнувшегося подростка от вставшего на задние лапы ротвейлера, в принципе, невозможно. Но тем не менее вероятность ложной тревоги может быть существенно снижена.
Несколько лет назад появились еще более сложные сенсоры – с 64 чувствительными площадками. Фактически это простой тепловизор с матрицей 8 х 8 элементов. Оснащенные мощным процессором, такие (обозвать их «извещатель» совсем язык не поворачивается) способны определять размер и расстояние до движущейся теплой цели, скорость и направление ее движения – еще лет 10 назад такие сенсоры считались верхом технологии для самонаводящихся ракет, а теперь применяются для защиты от банальных воров. Видимо, скоро ИК-датчиком мы привыкнем называть небольших роботов, которые разбудят вас ночью словами: «Извините, сэр, но воры, сэр, они хотят чаю. Должен ли я подать им чаю сейчас или попросить подождать, пока вы умоетесь и возьмете ваш револьвер?»

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png