Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов - LM317 и КТ819Г .

Схема регулируемого блока питания LM317

Список элементов схемы:

  • Стабилизатор LM317
  • Т1 - транзистор КТ819Г
  • Tr1 - трансформатор силовой
  • F1 - предохранитель 0.5А 250В
  • Br1 - диодный мост
  • D1 - диод 1N5400
  • LED1 - светодиод любого цвета
  • C1 - конденсатор электролитический 3300 мкф*43В
  • C2 - конденсатор керамический 0.1 мкф
  • C3 - конденсатор электролитический 1 мкф*43В
  • R1 - сопротивление 18K
  • R2 - сопротивление 220 Ом
  • R3 - сопротивление 0.1 Ом*2Вт
  • Р1 - сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора

Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.


Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший - для хорошего охлаждения. Всё-таки 3 ампера - это немало!

Справочники по компонентам (или datasheets) являются необходимейшим элементом
при разработке электронных схем. Однако, у них есть одна, но неприятная особенность.
Дело в том, что документация на любой электронный компонент (например, микросхему)
всегда должна быть готова еще до того, как эта микросхема начнет выпускаться.
В итоге, реально мы имеем ситуцию, когда микросхемы уже поступили в продажу,
а еще ни одно изделие на их основе не было создано.
А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets,
носят теоретический, рекомендательный характер.
Эти схемы в основном демонстрируют принципы работы электронных компонентов,
но они не проверены на практике и не должны поэтому слепо приниматься во внимание
при разработке.
Это нормальное и логичное положение дел, если только со временем и по мере
накопления опыта в документацию вносятся изменения и дополнения.
Практика же показывает обратное,- в большинстве случаев все схемные решения,
приводимые в datasheet, так и остаются на теоретическом уровне.
И, к сожалению, частенько это не просто теории, а грубые ошибки.
И еще большее сожаление вызывает несоответствие реальных (и важнейших)
параметров микросхемы, заявленным в документации.

В качестве типичного примера подобных datasheets приведем справочник на LM317,-
трех-выводной регулируемый стабилизатор напряжения, который, кстати, выпускается
уже лет 20. А схемы и данные в его datasheet все те же …

Итак, недостатки LM317, как микросхемы и ошибки в рекомендациях по ее использованию.

1. Защитные диоды.
Диоды D1 и D2 служат для защиты регулятора,-
D1 для защиты от короткого замыкания на входе, а D2 для защиты от разряда
конденсатора C2 “через низкое выходное сопротивление регулятора” (цитата).
На самом деле, диод D1 не нужен, поскольку никогда не бывает ситуации, когда
напряжение на входе регулятора меньше, чем напряжение на выходе.
Поэтому, диод D1 никогда не открывается, а значит и не защищает регулятор.
Кроме, конечно, случая короткого замыкания на входе. Но это – нереальная ситуация.
Диод D2 может открываться, конечно, Но, конденсатор C2 прекрасно разряжается
и без него, через резисторы R2 и R1 и через сопротивление нагрузки.
И как-то специально его разряжать нет необходимости.
Кроме того, упоминание в Datasheet о “разряде С2 через выход регулятора”
не более, чем ошибка, потому, как схема выходного каскада регулятора –
это эмиттерный повторитель.
И конденсатору C2 просто нет может разряжаться через выход регулятора.

2. Теперь — о самом неприятном, а именно о несоответствии реальных
электрических характеристик заявленным.

В Datasheets всех производителей есть параметр Adjustment Pin Current
(ток по входу подстройки). Параметр весьма интересный и важный, определяющий,
в частности, максимальную величину резистора в цепи входа Adj.
А также и значение конденсатора C2. Заявленное типовое значение тока Adj равно 50 мкА.
Что весьма впечатляет и полностью устраивало бы меня, как схемотехника.
Если бы на самом деле оно не было бы в 10 раз больше, т.е. 500 мкА.

Это — реальное несоответствие, проверенное на микросхемах разных производителей
и на протяжении многих лет.
А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?
А вот потому и низкоомный, что иначе невозможно получить на выходе LM317
минимальный уровень напряжения.

Самое интересное, что в методике измерения тока Adj низкоомный делитель
на выходе так же присутствует. Что фактически означает, что этот делитель включен
параллельно с электродом Adj.
Только с таким хитрым подходом и можно «влезть» в рамки типовой величины в 50 мкА.
Но это — довольно изящная, но уловка. «Особые условия измерения».

Я понимаю, весьма трудно добиться стабильного тока заявленной величины в 50 мкА.
Так не пишите липу в Datasheet. Иначе — это обман покупателя. А честность — лучшая политика.

3. Еще о самом неприятном.

В Datasheets LM317 есть параметр Line Regulation, который определяет
рабочий диапазон напряжений. И диапазон указан таки не плохой — от 3 до 40 Вольт.
Вот только одно маленькое НО …
Внутренняя часть LM317 содержит стабилизатор тока, в котором использован
стабилитрон на напряжение 6,3 В.
Поэтому, эффективное регулирование начинается с напряжения Вход-Выход в 7 Вольт.
Кроме того, выходной каскад LM317 — это транзистор n-p-n, включенный по схеме
эмиттерного повторителя. И на «раскачке» у него — такие же повторители.
Поэтому эффективная работа LM317 при напряжении в 3 В невозможна.

4. О схемах, обещающих получить на выходе LM317 регулируемое напряжение от ноля Вольт.

Минимальная величина напряжения на выходе LM317 составляет 1,25 В.
Можно было бы получить и меньше, если бы не встроенная схема защиты от
короткого замыкания на выходе. Не самая хорошая схема, мягко говоря …
В других микросхемах схема защиты от КЗ срабатывает при превышении тока нагрузки.
А в LM317 — при снижении выходного напряжение ниже 1,25 В. Простенько и со вкусом,-
закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.
Вот поэтому, все схемы приложений, которые обещают получить на выходе
LM317 регулируемое напряжение, начиная аж от ноля вольт — не работают.
Все эти схемы предлагают подключить контакт Adj через резистор к источнику
отрицательного напряжения.
Но уже при напряжении между выходом и контактом Adj менее 1,25 В
сработает схема защиты от КЗ.
Все эти схемы — чистая теоретическая фантазия. Их авторы не знают, как работает LM317.

5. Способ защиты от КЗ на выходе, используемый в LM317, также накладывает
известные ограничения на запуск регулятора,- в ряде случаев запуск будет затруднен,
поскольку невозможно различить режим короткого замыкания и режим нормального включения,
когда выходной конденсатор еще не заряжен.

6. Рекомендации по номиналам конденсатора на выходе LM317 очень впечатляют,-
это диапазон от 10 до 1000 мкФ. Что в сочетании с величиной выходного сопротивления
регулятора порядка одной тысячной Ома является полным бредом.
Даже студенты знают, что конденсатор на входе стабилизатора существенно,
мягко говоря, эффективнее, чем на выходе.

7. О принципе регулирования выходного напряжения LM317.

LM317 представляет собой операционный усилитель, в котором регулирование
выходного напряжения осуществляется по НЕ инвертирующему входу Adj.
Другими словами — по цепи Положительной обратной связи (ПОС).

Чем это плохо? А тем, что все помехи с выхода регулятора через вход Adj проходят внутрь LM317,
а затем — опять на нагрузку. Хорошо еще, что коэффициент передачи по цепи ПОС меньше единицы …
А то получили бы автогенератор.
И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2.
Хоть как-то отфильтровывать помехи и повышать устойчивость к самовозбуждению.

Весьма занятным представляется и тот факт, что в цепи ПОС, внутри LM317,
имеется конденсатор 30 пФ. Что увеличивает уровень пульсаций на нагрузке с повышением частоты.
Правда, это честно показано на диаграмме Ripple Rejection. Вот только зачем этот конденсатор?
Он был бы весьма полезен, если бы регулирование осуществлялось по цепи
Отрицательной обратной связи. А в цени ПОС он только ухудшает устойчивость.

Кстати, и с самим понятием Ripple Rejection не все «по понятиям».
В общепринятом понимании эта величина означает, насколько хорошо регулятор
фильтрует пульсации со ВХОДА.
А для LM317 она фактически означает степень собственной ущербности
и показывает, как же хорошо LM317 борется с пульсациями, которые сама же
берет с выхода и опять загоняет внутрь самой себя.
В других регуляторах регулирование осуществляется по цепи
Отрицательной обратной связи, что максимально улучшает все параметры.

8. О минимальном токе нагрузки для LM317.

В Datasheet указан минимальный ток нагрузки в 3,5 мА.
При меньшем токе LM317 неработоспособна.
Весьма странная особенность для стабилизатора напряжения.
Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже?
Это так же означает, что при токе нагрузки, равном 3,5 мА КПД регулятора не превышает 50 %.
Большое Вам спасибо, господа разработчики …

1. Рекомендации по применению защитных диодов для LM317 носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике.
А, поскольку, в качестве защитных диодов предлагается использовать мощные диоды Шоттки, то получаем ситуацию, когда стоимость (ненужной) защиты превышает цену самой LM317.

2. В Datasheets LM317 приведен неверный параметр на ток по входу Adj.
Он измерен в «особых» условиях при подключении низкоомного выходного делителя.
Эта методика измерения не соответствует общепринятому понятию «ток по входу» и показывает неспособность достичь при изготовлении LM317 заданных параметров.
А также и является обманом покупателя.

3. Параметр Line Regulation указан как диапазон от 3 до 40 Вольт.
На некоторых схемах приложений LM317 «работает» при напряжении вход-выход аж в два вольта.
На самом деле, диапазон эффективного регулирования равен 7 — 40 Вольт.

4. Все схемы получения на выходе LM317 регулируемого напряжения, начиная с ноля вольт, — практически не работоспособны.

5. Способ защиты от короткого замыкания LM317 на практике иногда применяется.
Он прост, но не является лучшим. В ряде случаев запуск регулятора будет вообще невозможен.

7. В LM317 реализован ущербный принцип регулирования выходного напряжения,-
по цепи Положительной обратной связи. Надо бы хуже, да некуда.

8. Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM317 и явно ограничивает варианты ее использования.

Суммируя все недостатки LM317 можно дать рекомендации:

а) Для стабилизации постоянных «типовых» напряжений 5, 6, 9, 12, 15, 18, 24 В целесообразно использовать трех-выводные стабилизаторы серии 78xx, а не LM317.

б) Для построения действительно эффективных стабилизаторов напряжения следует использовать микросхемы типа LP2950, LP2951, способных работать при напряжении вход-выход менее 400 милливольт.
В сочетании с мощными транзисторами при необходимости.
Эти же микросхемы эффективно работают и в качестве стабилизаторов тока.

в) В большинстве случаев операционный усилитель, стабилитрон и мощный транзистор (особенно полевой) дадут гораздо лучшие параметры, чем LM317.
И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

г). И, не доверяйте слепо Datasheets.
Любые микросхемы делаются и, что характерно, продаются людьми …

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

LM317 LM350 LM338
Диапазон значений регулируемого выходного напряжения 1,2…37В 1,2…33В 1,2…33В
Максимальный показатель токовой нагрузки 1,5А
Максимальное допустимое входное напряжение 40В 35В 35В
Показатель возможной погрешности стабилизации ~0,1% ~0,1% ~0,1%
Максимальная рассеиваемая мощность* 15-20 Вт 20-50 Вт 25-50 Вт
Диапазон рабочих температур 0° - 125°С 0° - 125°С 0° - 125°С
Datasheet LM317.pdf LM350.pdf LM338.pdf

* - зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора.
На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I 0 (1), где I 0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: P R =I 0 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности.
Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Требуемое выходное напряжение (В):

Номинал R1 (Ом): 240 330 470 510 680 750 820 910 1000

Дополнительно

Ток нагрузки (А):

Входное напряжение (В):

Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317 .

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы с регулировкой напряжения.

На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.

Технические характеристики:

  • Напряжение на выходе стабилизатора: 1,2… 37 вольт.
  • Ток выдерживающей нагрузки до 1,5 ампер.
  • Точность стабилизации 0,1%.
  • Имеется внутренняя защита от случайного короткого замыкания.
  • Отличная защита интегрального стабилизатора от возможного перегрева.


Мощность рассеяния и входное напряжение стабилизатора LM317

Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.

Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.

Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.

При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.

Подбор сопротивления для стабилизатора LM317

Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:

R1 + R2 + R3 = Vo / 0,008

Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).

Величина сопротивления переменного R2 напрямую связана с диапазоном напряжения на выходе. Обычно его сопротивление должно быть примерно 10…15 % от суммарного сопротивления оставшихся резисторов (R1 и R2) либо же можно подобрать его сопротивление экспериментально.

Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.

Стабилизация и защита схемы

Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.

Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.

Схема линейного интегрального стабилизатора с регулируемым выходным напряжением LM317 разработана автором первых монолитных трёхвыводных стабилизаторов Р. Видларом почти 50 лет назад. Микросхема получилась настолько удачной, что без изменений выпускается в настоящее время всеми основными производителями электронных компонентов и в разных вариантах включения применяется во множестве устройств.

Общая информация

Схемотехника устройства обеспечивает более высокие показатели по нестабильности параметров, в сравнении со стабилизаторами на фиксированное напряжение, и имеет практически все типы защиты, применяемые для интегральных микросхем: ограничение выходного тока, отключение при перегреве и превышении предельных рабочих параметров.

При этом требуется минимальное количество внешних компонентов для LM317, схема использует встроенные средства стабилизации и защиты.

Устройство выпускается в трёх вариантах исполнений – LM 117/217/317, отличающихся предельно допустимой рабочей температурой:

  • LM117: от -55 до 150 оС;
  • LM217: от -25 до 150 оС;
  • LM317: от 0 до 125 оС.

Все типы стабилизаторов производятся в стандартных корпусах TO-3, различных модификациях TO-220, для поверхностного монтажа – D2PAK, SO-8. Для устройств малой мощности используется ТО-92.

Цоколёвка для всех трёхвыводных изделий совпадает, что облегчает их замену. В зависимости от применённого корпуса, в маркировку вводятся дополнительные обозначения:

  • K – TO-3 (LM317K);
  • T – TO-220;
  • P – ISOWATT220 (пластмассовый корпус);
  • D2T – D2PAK;
  • LZ – TO-92;
  • LM – SOIC8.

Для LM317 используются все типоразмеры, LM117 выпускается только в корпусе ТО-3, LM217 – в ТО-3, D2PAK и ТО-220. Микросхемы LM317LZ в корпусах ТО-92 отличаются пониженными значениями максимальной мощности и выходного тока, до 100 мА, при аналогичных других свойствах. Иногда производитель использует свою маркировку, например, LM317НV от Texas Instruments – высоковольтные регуляторы в диапазоне 1,2-60 В, при этом цоколёвки корпусов совпадают с изделиями других фирм. В отличие от других микросхем, аббревиатура ЛМ (LM) применяется всеми производителями. Расшифровка других возможных обозначений приводится в техническом описании конкретного прибора.

Основные электрические параметры LM 117/217/317

Характеристики регуляторов определяются при разнице между входным (Ui ) и выходным напряжением (Uo ) 5 вольт, токе нагрузки 1,5 ампера и максимальной мощности 20 ватт:

  • Нестабильность по напряжению – 0,01%;
  • Опорное напряжение (UREF) – 1,25 В;
  • Минимальный ток нагрузки – 3,5 мА;
  • Максимальный выходной ток – 2,2 А, при разнице входного и выходного напряжений не более 15 В;
  • Предельная рассеиваемая мощность ограничена внутренней схемой;
  • Подавление пульсаций входного напряжения – 80 дБ.

Важно отметить! При максимально возможном значении Uin – Uout = 40 вольт допустимый ток нагрузки снижается до 0,4 ампер. Предельная рассеиваемая мощность ограничена внутренней схемой защиты, для корпусов ТО-220 и ТО-3 – приблизительно от 15 до 20 ватт.

Применения регулируемого стабилизатора

При проектировании электронных устройств, содержащих стабилизаторы напряжения, более предпочтительно применять регулятор напряжения на LM317, особенно для ответственных узлов аппаратуры. Использование таких решений требует дополнительной установки двух резисторов, но обеспечивает лучшие параметры питания, чем традиционные микросхемы с фиксированными напряжениями стабилизации, обладают большей гибкостью для разных применений.

Напряжение на выходе рассчитывается по формуле:

UOUT = UREF (1+ R2/R1) + IADJ, где:

  • VREF = 1,25V, ток управляющего выхода;
  • IADJ весьма мал – около 100 мкА и определяет погрешность установки напряжения, в большинстве случаев не учитывается.

Входной конденсатор (керамический или танталовый 1мкФ) устанавливается при значительном удалении от микросхемы ёмкости фильтра источника питания – более 50 мм, конденсатор на выходе применяется для снижения влияния переходных процессов на высоких частотах, для многих применений необязателен. Схема включения использует только один элемент регулировки – переменный резистор, на практике применяется многооборотный или заменяется постоянным нужного номинала. Метод управления позволяет реализовать программируемый источник на несколько напряжений, переключаемый любым доступным способом: реле, транзистором и т. д. Подавление пульсаций можно улучшить, если зашунтировать вывод управления конденсатором ёмкостью 5-15 мкФ.

Диоды типа 1N4002 устанавливаются при наличии выходного фильтра с конденсаторами большой ёмкости, выходном напряжении более 25 вольт и шунтирующей ёмкости свыше 10 мкФ. Микросхема LM317 редко используется на предельных режимах эксплуатации, средний ток нагрузки для многих решений не превышает 1,5 А. Установка прибора на радиатор необходима в любом случае, при выходном токе более 1 ампера желательно использовать корпус ТО-3 или ТО-220 с металлической контактной площадкой LM317T.

К сведению. Увеличить нагрузочную способность стабилизатора напряжения можно, применив мощный транзистор как регулирующий элемент для выходного тока.

Ток нагрузки устройства определяется параметрами VT1, подойдёт любой n-p-n транзистор с током коллектора 5-10 А: TIP120/132/140, BD911, КТ819 и др. Возможно параллельное включение двух-трёх штук. В качестве VT2 применяется любой кремниевый средней мощности, соответствующей структуры: BD138/140, КТ814/816.

Следует учитывать особенности подобных схем: допустимая разница между напряжениями на входе и выходе формируется из падений напряжений на транзисторе, около 2 вольт, и микросхеме, для которой минимальное значение – 3 вольта. Для устойчивой работы устройства рекомендуется не менее 8-10 вольт.

Свойства микросхем серии LM317 позволяют стабилизировать с высокой точностью ток нагрузки в широких пределах.

Фиксация тока обеспечивается подключением всего одного резистора, номинал которого рассчитывается по формуле:

I = UREF/R + IADJ = 1.25/R, где UREF = 1,25 V (сопротивление R в омах).

Схема может применяться для зарядки аккумуляторов стабильным током, питания светодиодов, для которых важно постоянство тока при изменении температуры. Также стабилизатор тока на LM317 может быть дополнен транзисторами, как и в случае стабилизации напряжения.

Отечественная промышленность выпускает функциональные аналоги LM317 со сходными параметрами – микросхемы КР142ЕН12А/Б с токами нагрузки 1 и 1,5 ампера.

Выходной ток до 5 ампер обеспечивает стабилизатор LM338 при аналогичных других характеристиках, что позволяет использовать все преимущества интегрального прибора без внешних транзисторов. Полным аналогом LM317 по всем параметрам, кроме полярности, является регулятор отрицательного напряжения LM337, на базе этих двух микросхем легко строятся двухполярные блоки питания.

Видео

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png