Пропорциональный счётчик

Недостатком ионизационной камеры являются очень низкие токи. Этот недостаток ионизационной камеры преодолевается в ионизационных детекторах с газовым усилением. Это позволяет регистрировать частицы с энергией < 10 кэВ, в то время как сигналы от частиц таких энергий в ионизационных камерах "тонут" в шумах усилителя.
Газовое усиление это увеличение количества свободных зарядов в объёме детектора за счёт того, что первичные электроны на своём пути к аноду в больших электрических полях приобретают энергию достаточную для ударной ионизации нейтральных атомов рабочей среды детектора. Возникшие при этом новые электроны в свою очередь успевают приобрести энергию достаточную для ионизации ударом. Таким образом, к аноду будет двигаться нарастающая электронная лавина. Это “самоусиление” электронного тока (коэффициент газового усиления) может достигать 10 3 -10 4 . Такой режим работы отвечает пропорциональному счётчику (камере) . В названии отражено то, что в этом приборе амплитуда импульса тока (или полный собранный заряд) остаётся пропорциональной энергии, затраченной заряженной частицей на первичную ионизацию среды детектора. Таким образом, пропорциональный счётчик способен выполнять функции спектрометра, как и ионизационная камера. Энергетическое разрешение пропорциональных счетчиков лучше, чем у сцинтилляционных, но хуже, чем у полупроводниковых.
Конструктивно пропорциональный счётчик обычно изготавливают в форме цилиндрического конденсатора с анодом в виде тонкой металлической нити по оси цилиндра (рис.1), что обеспечивает вблизи анода напряженность электрического поля значительно бoльшую, чем в остальной области детектора. При разности потенциалов между анодом и катодом 1000 вольт напряжённость поля вблизи нити-анода может достигать 40 000 вольт/см., в то время как у катода она равна сотням в/см.

Если ещё больше увеличить разность потенциалов между анодом и катодом и увеличить коэффициент газового усиления до значений >10 4 , то начинает нарушаться пропорциональность между потерянной частицей в детекторе энергией и величиной импульса тока. Прибор переходит в режим ограниченной пропорциональности и уже не может быть использован как спектрометр, а лишь как счётчик частиц.
Временнoе разрешение пропорционального счетчика может достигать10 -7 с.
Пропорциональные счетчики используются для регистрации альфа-, бета-частиц, протонов, гамма-квантов и нейтронов. Пропорциональные счетчики чаще всего заполняют гелием или аргоном. При регистрации заряженных частиц и гамма-квантов для того, чтобы избежать потерь энергии частицами до регистрации используют тонкие входные окна. Иногда источник помещают в объём счетчика. Эффективность регистрации для мягких гамма-квантов с энергией < 20 кэВ > 80%. Для повышения эффективности регистрации более энергетичных гамма-квантов используют ксенон.
При регистрации нейтронов пропорциональные счетчики заполняются газами 3 He или 10 BF 3 . Используются реакции

Проанализируем сначала поведение газонаполненных газоразрядных трубок, которые схематически изображены на рис. 6.4. Что произойдет, если увеличивать напряжение между центральной проволочкой и корпусом камеры? Выходной сигнал меняется в зависимости от приложенного напряжения (рис. 6.5). На графике показан выходной сигнал устройства при прохождении через него электрона и -частицы. При этом различные участки кривых отражают следующее:

Рис. 6.4. Газонаполненный детектор и устройство для регистрации импульсов тока от ионизирующих частиц, проходящих через газовый объем .

Рис. 6.5. Выходной импульс газонаполненного детектора, показанного на рис. 6.4, как функция напряжения Штриховая горизонтальная линия - уровень дискриминации для счетчика Гейгера - Мюллера. Две кривые являются откликом на быстрый электрон и ядро гелия а. Диапазоны описаны в тексте .

Рис. 6.6. Принцип устройства пропорционального счетчика, используемого в рентгеновской астрономии.

A. Имеется заметная рекомбинация, так что не все свободные электроны, появившиеся в результате прохождения заряженной частицы, достигают анода.

B. Напряжение достигло достаточной величины, чтобы рекомбинация стала незначительной.

C. Это очень важная область. При таких напряжениях свободные электроны, достаточно близко подошедшие к аноду, приобретают энергию, достаточную для образования новых электрон-ионных пар. Это может привести к очень сильному увеличению амплитуды импульса напряжения на выходе, который далее регистрируется электронной схемой счетчика. На практике стараются подавать на эти устройства как можно более высокое напряжение. Его поднимают до тех пор, пока сохраняется линейность выходного сигнала счетчика, т.е. прка полное число вторичных электрон-ионных пар пропорционально числу электрон-ионных пар, образовавшихся при прохождении космической частицы. Этот участок называют областью пропорциональности, а устройства, работающие в таком режиме, - пропорциональными счетчиками.

D. Пропорциональность исчезает.

E. При самых высоких напряжениях любая частица, производящая даже минимальную ионизацию, даст на выходе импульс большой амплитуды. В этом случае устройство работает в режиме насыщения.

Пропорциональные счетчики по своей важности стоят далеко впереди всех таких устройств. Правда, из-за малости их размеров по сравнению с пробегами энергичных частиц они редко используются для регистрации заряженных частиц (хотя, конечно, они срабатывают, когда частица космических лучей проходит через их чувствительный объем). Они находят применение главным образом как детекторы рентгеновского излучения в области энергии Именно с помощью таких детекторов было сделано большинство последних крупнейших открытий в рентгеновской астрономии (см. ниже). Рассмотрим более подробно конструкцию, чувствительность и частотную характеристику детекторов, устанавливаемых на спутниках и ракетах (рис. 6.6). Рентгеновский фотон проникает через входное

окно в объем внутри корпуса и поглощается вследствие фотоэффекта в газе, выбивая фотоэлектрон. Возбужденный атом переходит в основное состояние, излучив флуоресцентный рентгеновский квант, либо испустив электрон Оже. Фотоэлектрон обладает достаточной энергией, чтобы ионизовать другие атомы газа, так что в конце концов, как и в случае ионизационных потерь, на каждые энергии падающего рентгеновского фотона образуется одна электрон-ионная пара. Эти пары дрейфуют в область большой напряженности, где число пар увеличивается в раз, после чего регистрируется сигнал. Такой коэффициент усиления достаточен, чтобы возник ощутимый для регистрации электронной схемой сигнал.

Рассмотрим энергетическую функцию отклика детектора. Вероятность поглощения фотона с энергией Ни в газе счетчика равна

где коэффициенты поглощения, толщина окна и глубина газового промежутка соответственно. Рассмотрим процесс поглощения на -оболочки атомов различных материалов. Типичная кривая массового коэффициента поглощения показана на рис. 4.1. Между пределами

Рис. 6.7. Вероятность поглощения рентгеновского фотона в базовом объеме пропорционального счетчика с аргоновым наполнением без учета поглощения в окне; сечение фотоэлектрического поглощения, толщина слоя газа.

Рис. 6.8. Вероятность поглощения рентгеновского фотона в газовом объеме пропорционального счетчика (рис. 6.7) с окном из органического материала, такого, как майлар.

поглощения сечение поглощения о пропорционально а поэтому для входного окна подбирается материал с малым а газ - с максимально возможным

Рассмотрим теперь как функцию энергии для детектора, наполненного аргоном, и входного окна, изготовленного из майлара (органической пластмассы). Если учитывать только аргон, то выходной сигнал имел бы вид, показанный на рис. 6.7. Поглощение в окне влияет на его форму и он имеет вид, как на рис. 6.8. Мы наблюдаем скачок, когда подходим к Копределу поглощения углерода, но в остальном выходной сигнал детектора в значительной мере определяется типом газа и материалом входного окна. Можно изготовить майларовую пленку толщиной до что составит толщина слоя аргона может достигать При производстве таких устройств, конечно, возникают значительные проблемы, например неизбежная для таких тонких окон утечка газа. Для работы на спутниках приходится использовать более толстые окна, что ограничивает рабочий диапазон энергий, так как для наблюдений доступны только фотоны с энергией выше Иногда окна изготавливаются из бериллиевой фольги. Для работы на самых низких энергиях, применяются очень тонкие окна, в этом случае необходима газопроточная система, поддерживающая давление газа в детекторе постоянным. Энергетическое разрешение можно улучшить с помощью фильтров, и, конечно, поскольку счетчик пропорциональный, мы получаем информацию об энергии каждого приходящего фотона по амплитуде выходного сигнала. Точность определения энергии фотона ограничена статистическими флуктуациями числа выбиваемых электронов. К примеру, при энергии фотона даже если бы эффективность детектора достигала 100%, образуется около 300 электрон-ионных пар, а статистическая точность должна быть хуже, чем т.е. в самом лучшем случае 5%. Обычно она несколько хуже.

Отметим, что устройства заполняются инертными газами, а это означает, что большая часть энергии фотона переходит в кинетическую энергию электронов. Если бы использовался молекулярный газ, то какая-то часть его энергии перераспределялась между уровнями, соответствующими колебательным и вращательным степеням свободы.

В пропорциональных счетчиках облако электронов довольно компактно, поэтому можно придумать такую схему прибора, которая позволяла бы определять место регистрации каждого рентгеновского кванта. Это осуществляется в позиционно-чувствительных детекторах. Положение точки, в которой облако электронов достигает анода, можно измерить по отношению зарядов, снимаемых с каждого конца проволочки, так как заряд, растекаясь вдоль проволочки в противоположных направлениях, распределяется обратно пропорционально длине отрезка от точки собирания до конца проволочки. Чтобы определить вторую координату места регистрации, можно использовать многопроволочные аноды, и та проволочка, по которой течет заряд, как раз и дает координату в направлении, ортогональном аноду. Альтернативной схемой является установка двух плоскостей взаимно перпендикулярных анодных и катодных проволочек, по которым локализуется каждое событие.

Такая модификация особенно важна для рентгеновских телескопов, в которых производится фокусировка рентгеновских лучей в фокальной плоскости и регистрируется двумерное изображение рентгеновского неба.

энергии регистрируемой частицы, теряемой в его объеме на ионизацию. Заряженная частица, проходя через газ, наполняющий Пропорциональный счётчик , создаёт на своём пути пары ион - электрон, число которых зависит от энергии, терямой частицей в газе. При полном торможении частицы в Пропорциональный счётчик импульс пропорционален энергии частицы. Как и в ионизационной камере , под действием электрического поля электроны движутся к аноду, ионы - к катоду. В отличие от ионизационной камеры вблизи анода Пропорциональный счётчик поле столь велико, что электроны приобретают энергию, достаточную для вторичной ионизации. В результате вместо каждого первичного электрона на анод приходит лавина электронов и полное число электронов, собранных на аноде Пропорциональный счётчик , во много раз превышает число первичных электронов. Отношение полного числа собранных электронов к первоначальному количеству называется коэффициентом газового усиления (в формировании импульса участвуют также и ионы). В Пропорциональный счётчик обычно катодом служит цилиндр, а анодом - тонкая (10-100 мкм ) металлическая нить, натянутая по оси цилиндра (см. рис. ). Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без «размножения». Пропорциональный счётчик заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, которые поглощают фотоны, образующиеся в лавинах.

Типичные характеристики Пропорциональный счётчик : коэффициент газового усиления ~ 10 3 -10 4 (но может достигать 10 6 и больше); амплитуда импульса ~ 10 -2 в при ёмкости Пропорциональный счётчик около 20 пкф ; развитие лавины происходит за время ~ 10 -9 - 10 -8 сек, однако момент появления сигнала на выходе Пропорциональный счётчик зависит от места прохождения ионизующей частицы, т. е. от времени дрейфа электронов до нити. При радиусе ~ 1 см и давлении ~ 1 атм время запаздывания сигнала относительно пролёта частицы ~ 10 -6 сек. По энергетическому разрешению Пропорциональный счётчик превосходит сцинтилляционный счётчик , но уступает полупроводниковому детектору . Однако Пропорциональный счётчик позволяют работать в области энергий < 1 кэв , где полупроводниковые детекторы неприменимы.

Пропорциональный счётчик используются для регистрации всех видов ионизирующих излучений. Существуют Пропорциональный счётчик для регистрации a- частиц, электронов, осколков деления ядер и т.д., а также для нейтронов, гамма- и рентгеновских квантов. В последнем случае используются процессы взаимодействия нейтронов, g- и рентгеновских квантов с наполняющим счётчик газом, в результате которых образуются регистрируемые Пропорциональный счётчик вторичные заряженные частицы (см. Нейтронные детекторы ). Пропорциональный счётчик сыграл важную роль в ядерной физике 30-40-х гг. 20 в., являясь наряду с ионизационной камерой практически единственным спектрометрическим детектором.

Второе рождение Пропорциональный счётчик получил в физике частиц высоких энергий в конце 60-х гг. в виде пропорциональной камеры, состоящей из большого числа (10 2 -10 3) Пропорциональный счётчик , расположенных в одной плоскости и в одном газовом объёме. Такое устройство позволяет не только измерять ионизацию частицы в каждом отдельном счётчике, но и фиксировать место её прохождения. Типичные параметры пропорциональных камер: расстояние между соседними анодными нитями ~ 1-2 мм, расстояние между анодной и катодной плоскостями ~1 см ; разрешающее время ~ 10 -7 сек. Развитие микроэлектроники и внедрение в экспериментальную технику ЭВМ позволили создать системы, состоящие из десятков тыс. отдельных нитей, соединённых непосредственно с ЭВМ, которая запоминает и обрабатывает всю информацию от пропорциональной камеры. Т. о., она является одновременно быстродействующим спектрометром и трековым детектором.

В 70-х гг. появилась дрейфовая камера, в которой для измерения места пролёта частицы используется дрейф электронов, предшествующий образованию лавины. Чередуя аноды и катоды отдельных Пропорциональный счётчик в одной плоскости и измеряя время дрейфа электронов, можно измерить место прохождения частицы через камеру с высокой точностью (~ 0,1 мм ) при числе нитей в 10 раз меньше, чем в пропорциональной камере. Пропорциональный счётчик применяются не только в ядерной физике, но и в физике космических лучей , астрофизике, в технике, медицине, геологии, археологии и т.д. Например, с помощью установленного на «Луноходе-1» Пропорциональный счётчик по рентгеновской флюоресценции производился химический элементный анализ вещества поверхности Луны.

Лит.: Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, М. - Л., 1949; Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, [ч. 1]).

В. С. Кафтанов, А. В. Стрелков.

Статья про слово "Пропорциональный счётчик " в Большой Советской Энциклопедии была прочитана 4801 раз

Пропорциональный счётчик, газоразрядный прибор для регистрации ионизирующих излучении , создающий сигнал, амплитуда которого пропорциональна энергии регистрируемой частицы, теряемой в его объеме на ионизацию. Заряженная частица, проходя через газ, наполняющий П. с., создаёт на своём пути пары ион - электрон, число которых зависит от энергии, терямой частицей в газе. При полном торможении частицы в П. с. импульс пропорционален энергии частицы. Как и в ионизационной камере , под действием электрического поля электроны движутся к аноду, ионы - к катоду. В отличие от ионизационной камеры вблизи анода П. с. поле столь велико, что электроны приобретают энергию, достаточную для вторичной ионизации. В результате вместо каждого первичного электрона на анод приходит лавина электронов и полное число электронов, собранных на аноде П. с., во много раз превышает число первичных электронов. Отношение полного числа собранных электронов к первоначальному количеству называется коэффициентом газового усиления (в формировании импульса участвуют также и ионы). В П. с. обычно катодом служит цилиндр, а анодом - тонкая (10-100 мкм ) металлическая нить, натянутая по оси цилиндра (см. рис. ). Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без «размножения». П. с. заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, которые поглощают фотоны, образующиеся в лавинах.

Типичные характеристики П. с.: коэффициент газового усиления 10 3 -10 4 (но может достигать 10 6 и больше); амплитуда импульса 10 - 2 в при ёмкости П. с. около 20 пкф ; развитие лавины происходит за время 10 - 9 - 10 - 8 сек, однако момент появления сигнала на выходе П. с. зависит от места прохождения ионизующей частицы, т. е. от времени дрейфа электронов до нити. При радиусе 1 см и давлении 1 атм время запаздывания сигнала относительно пролёта частицы 10 - 6 сек. По энергетическому разрешению П. с. превосходит сцинтилляционный счётчик , но уступает полупроводниковому детектору . Однако П. с. позволяют работать в области энергий < 1 кэв , где полупроводниковые детекторы неприменимы.

П. с. используются для регистрации всех видов ионизирующих излучений. Существуют П. с. для регистрации a - частиц, электронов, осколков деления ядер и т.д., а также для нейтронов, гамма- и рентгеновских квантов. В последнем случае используются процессы взаимодействия нейтронов, g - и рентгеновских квантов с наполняющим счётчик газом, в результате которых образуются регистрируемые П. с. вторичные заряженные частицы (см. Нейтронные детекторы ). П. с. сыграл важную роль в ядерной физике 30-40-х гг. 20 в., являясь наряду с ионизационной камерой практически единственным спектрометрическим детектором.

Второе рождение П. с. получил в физике частиц высоких энергий в конце 60-х гг. в виде пропорциональной камеры, состоящей из большого числа (10 2 -10 3) П. с., расположенных в одной плоскости и в одном газовом объёме. Такое устройство позволяет не только измерять ионизацию частицы в каждом отдельном счётчике, но и фиксировать место её прохождения. Типичные параметры пропорциональных камер: расстояние между соседними анодными нитями 1-2 мм, расстояние между анодной и катодной плоскостями 1 см ; разрешающее время 10 - 7 сек. Развитие микроэлектроники и внедрение в экспериментальную технику ЭВМ позволили создать системы, состоящие из десятков тыс. отдельных нитей, соединённых непосредственно с ЭВМ, которая запоминает и обрабатывает всю информацию от пропорциональной камеры. Т. о., она является одновременно быстродействующим спектрометром и трековым детектором.

В 70-х гг. появилась дрейфовая камера, в которой для измерения места пролёта частицы используется дрейф электронов, предшествующий образованию лавины. Чередуя аноды и катоды отдельных П. с. в одной плоскости и измеряя время дрейфа электронов, можно измерить место прохождения частицы через камеру с высокой точностью (0,1 мм ) при числе нитей в 10 раз меньше, чем в пропорциональной камере. П. с. применяются не только в ядерной физике, но и в физике космических лучей , астрофизике, в технике, медицине, геологии, археологии и т.д. Например, с помощью установленного на «Луноходе-1» П. с. по рентгеновской флюоресценции производился химический элементный анализ вещества поверхности Луны.

Лит.: Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, М. - Л., 1949; Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, [ч. 1]).

В. С. Кафтанов, А. В. Стрелков.

Схема пропорционального счетчика: а - область дрейфа электронов; б - область газового усиления.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

1.3 Пропорциональный счётчик

Пропорциональный счётчик, газоразрядный прибор для регистрации ионизирующих излучений, создающий сигнал, амплитуда которого пропорциональна энергии регистрируемой частицы, теряемой в его объеме на ионизацию.

Недостатком ионизационной камеры являются очень низкие токи. Этот недостаток ионизационной камеры преодолевается в ионизационных детекторах с газовым усилением, что даёт возможность регистрировать частицы с энергией <10 кэВ, в то время как сигналы от частиц таких энергий в ионизационных камерах «тонут» в шумах усилителя.

Работа пропорционального счётчика основана на явлении газового усиления.

Газовое усиление это увеличение количества свободных зарядов в объёме детектора за счёт того, что первичные электроны на своём пути к аноду в больших электрических полях приобретают энергию достаточную для ударной ионизации нейтральных атомов рабочей среды детектора. Возникшие при этом новые электроны в свою очередь успевают приобрести энергию достаточную для ионизации ударом. Таким образом, к аноду будет двигаться нарастающая электронная лавина. Это «самоусиление» электронного тока (коэффициент газового усиления) может достигать 103 -104 . Такой режим работы отвечает пропорциональному счётчику (камере) . В названии отражено то, что в этом приборе амплитуда импульса тока (или полный собранный заряд) остаётся пропорциональной энергии, затраченной заряженной частицей на первичную ионизацию среды детектора. Таким образом, пропорциональный счётчик способен выполнять функции спектрометра, как и ионизационная камера. Энергетическое разрешение пропорциональных счетчиков лучше, чем у сцинтилляционных, но хуже, чем у полупроводниковых.

Заряженная частица, проходя через газ, наполняющий пропорциональный счётчик, создаёт на своём пути па ры ион - электрон, число которых зависит от энергии, теряемой частицей в газе. При полном торможении частицы в пропорциональном счётчике импульс пропорционален энергии частицы. Как и в ионизационной камере, под действием электрического поля электроны движутся к аноду, ионы - к катоду. В отличие от ионизационной камеры вблизи анода пропорционального счётчика поле столь велико, что электроны приобретают энергию, достаточную для вторичной ионизации. В результате вместо каждого первичного электрона на анод приходит лавина электронов и полное число электронов, собранных на аноде пропорционального счётчика, во много раз превышает число первичных электронов. Отношение полного

числа собранных электронов к первоначальному количеству называется коэффициентом газового усиления (в формировании импульса участвуют также и ионы).

Рис. 14. Счётная характеристика пропорционального счётчика, полученная с комбинированным источником β и α -частиц.

Отношение числа ионов n, образовавшихся в результате газового усиления, к первоначальному числу ионов n0 ,

образованных частицей, называется коэффициентом газового усиления М

10 ≤ М ≤ 10000 . Коэффициент М выбирается в зависимости от энергии частицы, рода работы (счёт или измерение энергии) и оптимального соотношение сигнал-шум. При измерении энергии величину М стремятся брать по возможности меньше, т.к. в этом случае напряжение на счётчике соответствует более пологому участку его вольт-амперной характеристики и не требуется слишком высокая стабильность напряжения от источника питания. При счёте частиц высокая стабильность напряжения не нужна, и можно использовать высокие значения М , включая и область ограниченной пропорциональности.

Газовое усиление имеет место при любой

геометрии электродов, однако наибольшее распространение получили цилиндрические пропорциональные счётчики, для которых характерны

низкие значения рабочего напряжения, широкие возможности применения и компактность.

Рис. 15. Схема пропорционального счётчика в продольном (а ) и поперечном (б ) разрезах (аналогично устроен счетчик Гейгера и цилиндрическая ионизационная камера): 1 − нить-анод, 2 −

цилиндрический катод, 3 − изолятор, 4 − траектория заряженной частицы, 5 − электронная лавина. Электроны и ионы, созданные частицей в результате первичной ионизации атомов инертного газа, показаны соответственно темными и белыми кружочками.

Конструктивно пропорциональный счётчик обычно изготавливают в форме цилиндрического конденсатора с анодом в виде тонкой металлической нити по оси цилиндра, что обеспечивает вблизи анода напряженность электрического поля значительно бoльшую, чем в остальной области детектора. При разности потенциалов между анодом и катодом 1000 вольт напряжённость поля вблизи нити-анода может достигать 40000 вольт/см., в то время как у катода она равна сотням в/см. Диаметр нити (вольфрам или сталь) выбирают в пределах от 0,05 до 0,3 мм. Поверхность нити полируют, так как незначительные шероховатости поверхности сильно искажают электрическое поле вблизи собирающего электрода.

Рис. 16. Конструкция цилиндрического пропорционального счётчика: 1 – собирающий электрод; 2 – охранное кольцо; 3 – изолятор; 4 – корпус.

Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без «размножения». Пропорциональный счётчик заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, которые поглощают фотоны, образующиеся в лавинах. Давление газа изменяется в широких пределах – от 50 до 760 мм рт. ст.

Для корпуса счётчика пригодны медь, латунь, алюминий и другие материалы. Минимальная толщина стенок δ 0,05 мм ограничивается прочностью материалов и условием герметичности рабочего объёма. Корпус счётчика, наполненного газом под небольшим давлением, должен выдерживать внешнее атмосферное давление.

Рис. 17. Конструкция 4π -счётчика для измерения абсолютной β -

активности: 1 – диафрагма; 2 – держатель источника; 3 – резиновое уплотнение; 4 – собирающий электрод.

Абсолютную β -активность источников измеряют 4π -счётчиками (Рис.17 ), представляющими собой спаренные полусферические пропорциональные счётчики. Внутрь каждой полусферы на фольге, расположенной симметрично относительно счётчиков. Он испускает β - частицы в телесный угол 4π . Почти все испущенные β -частицы регистрируются счётчиком, и его скорость счёта приблизительно равна активности источника. При определении активности 4π -счётчиком вводят поправки на поглощение β -частиц в фольге и слое активного вещества. Кроме сферических применяют и другие формы 4π -счётчиков. Катоды 4π - счётчиков могут быть прямоугольными и полуцилиндрическими.

Рис.18. Схема включения пропорционального счётчика.

Типичные характеристики пропорционального счётчика: коэффициент газового усиления ~ 103 -104 (но может достигать 106 и больше); амплитуда импульса ~ 10-2 в при ёмкости пропорционального счётчика с. около 20 пкф ; развитие лавины происходит за время ~ 10-9 - 10-8 сек, однако момент появления сигнала на выходе счётчика зависит от

места прохождения ионизующей частицы, т. е. от времени дрейфа электронов до нити. При радиусе ~ 1 см и давлении ~ 1 атм время запаздывания сигнала относительно пролёта частицы ~ 10-6 сек. По энергетическому разрешению пропорциональный счётчик превосходит сцинтилляционный счётчик, но уступает полупроводниковому детектору. Однако пропорциональные счётчики позволяют работать в области энергий < 1 кэВ , где полупроводниковые детекторы неприменимы.

Рис. 19. Блок-схема пропорционального счетчика: 1 –

пропорциональный счётчик; 2 – высоковольтный стабилизированный источник напряжения; 3 – широкополосный линейный усилитель; 3а – выносной блок усилителя (катодный повторитель); 4 – амплитудный дискриминатор; 5 – регулирующее устройство; 6 – импульсный осциллограф.

Если ещё больше увеличить разность потенциалов между анодом и катодом и увеличить коэффициент газового усиления до значений >104 , то начинает нарушаться пропорциональность между потерянной частицей в детекторе энергией и величиной импульса тока. Прибор переходит в режим ограниченной пропорциональности и уже не может быть использован как спектрометр, а лишь как счётчик частиц. Временнoе разрешение пропорционального счетчика может достигать10-7 с.

Скорость счёта импульсов при постоянной интенсивности излучения и чувствительности системы зависит от напряжения на электродах. Эту зависимость называют счётной характеристикой. На участке напряжений U>U 0 счётная характеристика имеет горизонтальный участок (плато), на котором скорость счёта постоянна. Амплитуда импульса от всех заряженных частиц на плато больше порога чувствительности схемы. Поэтому схема регистрирует все заряженные частицы, поступающие в пропорциональный счётчик.

Плато пропорциональных счётчиков для α -частиц начинается при небольших напряжениях. Резкий выход на плато наблюдается только для параллельного пучка моноэнергетических α -частиц. Если α -частицы движутся в газе с неодинаковыми энергиями по различным направлениям, то происходит плавный подход к плато в более высокой области напряжений. Для β -частиц плато достигается или при использовании высокочувствительных схем, или при наполнении газом под давлением больше 1 атм. Это один из недостатков пропорциональных счётчиков, затрудняющих их применение для регистрации β -частиц.

Плато наклонно к оси напряжений под небольшим углом. Наклон плато (0,1%) объясняется появлением ложных разрядов в газе, обусловленных первичной ионизацией от посторонних источников.

Пропорциональный счётчик, работающий на плато, регистрирует все заряженные частицы. В области ниже плато не все частицы регистрируются счётчиком и его эффективность уменьшается. Поэтому наиболее приемлем режим работы пропорционального счётчика в области плато, на котором эффективность для заряженных частиц близка к 100%.

Пропорциональные счётчики используются для регистрации всех видов ионизирующих излучений. Существуют пропорциональные счётчики для регистрации α - частиц, электронов, осколков деления ядер и т.д., а также для нейтронов, гамма- и рентгеновских квантов. В последнем случае используются процессы взаимодействия нейтронов, γ - и рентгеновских квантов с наполняющим счётчик газом, в результате которых образуются регистрируемые пропорциональным счётчиком вторичные заряженные частицы.

Пропорциональный счётчик сыграл важную роль в ядерной физике 30 - 40-х гг. 20 в., являясь наряду с ионизационной камерой практически единственным спектрометрическим детектором. Второе рождение пропорциональный счётчик получил в физике частиц высоких энергий в конце 60-х гг. в виде пропорциональной камеры, состоящей из большого числа (102 -103 ) пропорциональных счётчиков, расположенных в одной плоскости и в одном газовом объёме. Такое устройство позволяет не только измерять ионизацию частицы в каждом отдельном счётчике, но и фиксировать место её прохождения. Типичные параметры пропорциональных камер: расстояние между соседними анодными нитями ~ 1 - 2 мм,

расстояние между анодной и катодной плоскостями ~1 см ; разрешающее время ~ 10-7 сек.

Рис. 20. Схема пропорционального счетчика: а - область дрейфа электронов; б - область газового усиления.

Развитие микроэлектроники и внедрение в экспериментальную технику ЭВМ позволили создать системы, состоящие из десятков тысяч отдельных нитей, соединённых непосредственно с ЭВМ, которая запоминает и обрабатывает всю информацию от пропорциональной камеры. Таким образом, она является одновременно быстродействующим спектрометром и трековым детектором. В 70-х гг. появилась дрейфовая

камера, в которой для измерения места пролёта частицы используется дрейф электронов, предшествующий образованию лавины. Чередуя аноды и катоды отдельных пропорциональных счётчиков в одной плоскости, и измеряя время дрейфа электронов, можно измерить место прохождения частицы через камеру с высокой точностью (~ 0,1 мм ) при числе нитей в 10 раз меньше, чем в пропорциональной камере. Пропорциональные счётчики применяются не только в ядерной физике, но и в физике космических лучей, астрофизике, в технике, медицине, геологии, археологии и т.д. Например, с помощью установленного на «Луноходе-1» пропорционального счётчика по рентгеновской флюоресценции производился химический элементный анализ вещества поверхности Луны.

Использование газового усиления в пропорциональных счётчиках даёт возможность значительно повысить чувствительность измерений по сравнению с ионизационными камерами, а наличие

пропорциональности усиления в счётчиках позволяет определять энергию ядерных частиц и изучать их природу, так же, как и в ионизационных камерах.

Пропорциональные счётчики используются для регистрации числа ионизирующих частиц, определения их энергии (импульсный режим), а также для измерения потоков излучения по среднему току (интегральный режим), аналогично ионизационным камерам с соответствующими режимами работы.

Пропорциональные счетчики используются для регистрации альфа-, бета-частиц, протонов, гаммаквантов и нейтронов. Пропорциональные счетчики чаще всего заполняют гелием или аргоном. При регистрации заряженных частиц и гамма-квантов для того, чтобы избежать потерь энергии частицами до регистрации используют тонкие входные окна. Иногда источник помещают в объём счетчика. Эффективность регистрации для мягких гамма-квантов с энергией меньше 20 кэВ более 80%. Для повышения эффективности регистрации более энергетичных гамма-квантов используют ксенон.

Необходимым условием регистрации заряженной частицы или γ -кванта является создание ими в рабочем объеме счетчика хотя бы одной пары ионов. Для любой ионизирующей частицы вероятность такого события близка к единице. Гамма-кванты обладают большой проникающей способностью и для них вероятность образования в газе счетчика вторичного электрона, а, следовательно, и вероятность регистрации, составляет малые доли от единицы.

При прохождении гамма-кванта через рабочий объем счетчика он создает вторичный электрон в результате фотоэффекта и эффекта образования пар. Однако для гамма-квантов малых энергий имеет значение только фотоэффект (пороговая энергия для эффекта образования пар равна 1.01 МэВ). Сечение фотоэффекта увеличивается с увеличением атомного номера вещества как Z 5 . Поэтому, для увеличения эффективности регистрации фотонов, необходимо счетчик наполнять газом с большим Z (криптон или ксенон).

Поскольку пропорциональные счетчики используются в основном для измерения излучения малых энергий (порядка десятков килоэлектронвольт), то определенные требования предъявляются к материалу окна, пропускающего излучение в рабочий объем счетчика. Материал окна выбирается таким, чтобы поглощение в нем для исследуемого диапазона энергий было минимальным. Типичным пропорциональным счётчиком является детектор с бериллиевым окном толщиной 70 мкм, наполненный смесью газов 90% Xe + 10% CH4 до общего давления Р = 0,8 атм. Такой счётчик имеет почти 100% эффективность при энергии γ - квантов 10 кэВ.

При регистрации нейтронов пропорциональные счетчики заполняются газами 3 He или 10 BF3 . Используются реакции

n + 3 He → 3 H + 1 H + 0.764 МэВ

n + 10 B → 7 Li* + 4 He 7 Li + 4He + (0.48 МэВ) +2.3 МэВ (93%) n + 10 B → 7 Li + 4 He + 2.8 МэВ (7%).

Эффективное сечение последней реакции для тепловых нейтронов очень велико.

Нейтроны регистрируются с помощью заряженных частиц, возникающих в результате этих реакций и вызывающих ионизацию в счетчике. Вероятность регистрации быстрых нейтронов значительно меньше, чем медленных, и эффективности счетчиков быстрых нейтронов не превышают долей процента.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png